首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Performance of mutual information similarity measure for registration of multitemporal remote sensing images
【24h】

Performance of mutual information similarity measure for registration of multitemporal remote sensing images

机译:互信息相似度度量在多时相遥感影像配准中的性能

获取原文
获取原文并翻译 | 示例

摘要

Accurate registration of multitemporal remote sensing images is essential for various change detection applications. Mutual information has recently been used as a similarity measure for registration of medical images because of its generality and high accuracy. Its application in remote sensing is relatively new. There are a number of algorithms for the estimation of joint histograms to compute mutual information, but they may suffer from interpolation-induced artifacts under certain conditions. In this paper, we investigate the use of a new joint histogram estimation algorithm called generalized partial volume estimation (GPVE) for computing mutual information to register multitemporal remote sensing images. The experimental results show that higher order GPVE algorithms have the ability to significantly reduce interpolation-induced artifacts. In addition, mutual-information-based image registration performed using the GPVE algorithm produces better registration consistency than the other two popular similarity measures, namely, mean squared difference (MSD) and normalized cross correlation (NCC), used for the registration of multitemporal remote sensing images.
机译:多时相遥感影像的准确配准对于各种变化检测应用至关重要。互信息由于其通用性和高准确性,最近已被用作医学图像配准的相似性度量。它在遥感中的应用相对较新。有多种算法可用于估计联合直方图以计算互信息,但是在某些条件下,它们可能会遭受由插值引起的伪像。在本文中,我们研究了使用一种称为广义局部体积估计(GPVE)的新联合直方图估计算法来计算互信息以注册多时相遥感影像。实验结果表明,高阶GPVE算法具有显着减少内插引起的伪像的能力。此外,使用GPVE算法执行的基于互信息的图像配准比其他两种流行的相似度度量方法(均方差(MSD)和归一化互相关(NCC))用于多时相遥感影像的配准具有更好的配准一致性。感应图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号