首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Does independent component analysis play a role in unmixing hyperspectral data?
【24h】

Does independent component analysis play a role in unmixing hyperspectral data?

机译:独立成分分析在分解高光谱数据中是否起作用?

获取原文
获取原文并翻译 | 示例

摘要

Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
机译:最近已经提出了独立成分分析(ICA)作为解混高光谱数据的工具。 ICA建立在两个假设的基础上:1)观察到的光谱矢量是成分光谱(末端成员光谱)的线性混合,并由相应的丰度分数(来源)加权; 2)来源在统计上是独立的。独立因子分析(IFA)将ICA扩展到沉浸在噪声中的独立声源的线性混合。关于高光谱数据,只要不同组成物质(端成员)之间的多重散射可忽略不计,并且根据分数丰度对表面进行分区,则第一个假设有效。但是,由于由于数据采集过程中的物理限制,与每个像素关联的丰度分数之和是恒定的,因此违反了第二个假设。因此,源不能在统计上独立,这会损害ICA / IFA算法在高光谱分解中的性能。本文研究了高光谱源统计依赖对ICA和IFA性能的影响。我们得出的结论是,随着签名变异性,端成员数量和信噪比的增加,这些方法的准确性趋于提高。在任何情况下,总有错误地混合了末端成员。我们通过最小化模拟和真实高光谱混合物的相互信息来得出这个结论。互信息的计算基于高斯混合与观测数据的拟合。提出了一种根据正确未混合的可能性对ICA和IFA估计进行排序的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号