首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and Radar observations
【24h】

A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and Radar observations

机译:一种从水电L波段辐射计和雷达观测中获取高分辨率地表土壤水分的方法

获取原文
获取原文并翻译 | 示例

摘要

NASA's Earth System Science Pathfinder Hydrospheric States (Hydros) mission will provide the first global scale space-borne observations of Earth's soil moisture using both L-band microwave radiometer and radar technologies. In preparation for the Hydros mission, an observation system simulation experiment (OSSE) has been conducted. As a part of this OSSE, the potential for retrieving useful surface soil moisture at spatial resolutions of 9 and 3 km was explored. The approach involved optimally merging relatively accurate 36-km radiometer brightness temperature and relatively noisy 3-km radar backscatter cross section observations using a Bayesian method. Based on the Hydros OSSE data sets with low and high noises added to the simulated observations or model parameters, the Bayesian method performed better than direct inversion of either the brightness temperature or radar backscatter observations alone. The root-mean-square errors of 9-km soil moisture retrievals from the Bayesian merging method were reduced by 0.5 %vol/vol and 1.4 %vol/vol from the errors of direct radar inversions for the entire OSSE domain of all 34 consecutive days for the low and high noise data sets, respectively. Improvement in soil moisture estimates using the Bayesian merging method over the direct inversions of radar or radiometer data were even more significant for soil moisture retrieval at 3-km resolution. However, to address the representativeness of these results at the global and multiyear scales, further performance comparison studies are needed, particularly with actual field data.
机译:NASA的地球系统科学探路者水圈状态(Hydros)任务将使用L波段微波辐射计和雷达技术,提供全球范围内第一个对地球土壤湿度的太空观测。为执行Hydros任务,已经进行了观测系统模拟实验(OSSE)。作为该OSSE的一部分,探索了以9和3 km的空间分辨率检索有用的表层土壤水分的潜力。该方法涉及使用贝叶斯方法最佳地合并相对准确的36公里辐射计亮度温度和相对嘈杂的3公里雷达后向散射截面观测结果。基于在模拟观测值或模型参数中添加了低噪声和高噪声的Hydros OSSE数据集,贝叶斯方法的效果优于直接对亮度温度或雷达反向散射观测值进行直接反演。通过贝叶斯合并方法获得的9公里土壤湿度的均方根误差与连续34天的整个OSSE域的直接雷达反演误差相比分别降低了0.5%vol / vol和1.4%vol / vol分别针对低噪声和高噪声数据集。使用贝叶斯合并方法对雷达或辐射计数据进行直接反演后,土壤水分估算值的改善对于以3 km分辨率进行土壤水分反演而言更为显着。但是,为了解决这些结果在全球和多年尺度上的代表性,需要进行进一步的性能比较研究,尤其是对于实际的现场数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号