首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >High-resolution change estimation of soil moisture using L-band radiometer and Radar observations made during the SMEX02 experiments
【24h】

High-resolution change estimation of soil moisture using L-band radiometer and Radar observations made during the SMEX02 experiments

机译:使用L波段辐射计和SMEX02实验期间进行的雷达观测来高分辨率估算土壤湿度

获取原文
获取原文并翻译 | 示例

摘要

The soil moisture experiments held during June-July 2002 (SMEX02) at Iowa demonstrated the potential of the L-band radiometer (PALS) in estimation of near surface soil moisture under dense vegetation canopy conditions. The L-band radar was also shown to be sensitive to near surface soil moisture. However, the spatial resolution of a typical satellite L-band radiometer is of the order of tens of kilometers, which is not sufficient to serve the full range of science needs for land surface hydrology and weather modeling applications. Disaggregation schemes for deriving subpixel estimates of soil moisture from radiometer data using higher resolution radar observations may provide the means for making available global soil moisture observations at a much finer scale. This paper presents a simple approach for estimation of change in soil moisture at a higher (radar) spatial resolution by combining L-band copolarized radar backscattering coefficients and L-band radiometric brightness temperatures. Sensitivity of AIRSAR L-band copolarized channels has been demonstrated by comparison with in situ soil moisture measurements as well as PALS brightness temperatures. The change estimation algorithm has been applied to coincident PALS and AIRSAR datasets acquired during the SMEX02 campaign. Using AIRSAR data aggregated to a 100-m resolution, PALS radiometer estimates of soil moisture change at a 400-m resolution have been disaggregated to 100-m resolution. The effect of surface roughness variability on the change estimation algorithm has been explained using integral equation model (IEM) simulations. A simulation experiment using synthetic data has been performed to analyze the performance of the algorithm over a region undergoing gradual wetting and dry down.
机译:2002年6月至7月在爱荷华州举行的土壤水分试验(SMEX02)证明了L波段辐射计(PALS)在密集植被冠层条件下估算近地表土壤水分方面的潜力。还显示出L波段雷达对近地表土壤水分敏感。但是,典型的卫星L波段辐射计的空间分辨率约为几十公里,不足以满足地面水文学和天气建模应用的全部科学需求。使用更高分辨率的雷达观测值从辐射计数据中得出土壤水分的亚像素估计值的分解方案,可以为更精细的全球土壤湿度观测提供手段。本文结合L波段共极化雷达的反向散射系数和L波段辐射亮度温度,提出了一种在较高(雷达)空间分辨率下估算土壤水分变化的简单方法。通过与原位土壤水分测量以及PALS亮度温度进行比较,证明了AIRSAR L波段同极化通道的灵敏度。更改估计算法已应用于SMEX02活动期间获取的重合PALS和AIRSAR数据集。使用汇总为100-m分辨率的AIRSAR数据,将PALS辐射计在400-m分辨率下对土壤水分变化的估计值分解为100-m分辨率。使用积分方程模型(IEM)模拟已经解释了表面粗糙度变化对变化估计算法的影响。已经进行了使用合成数据的模拟实验,以分析该算法在经历逐渐润湿和干燥的区域上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号