首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Filament Preserving Model (FPM) Segmentation Applied to SAR Sea-Ice Imagery
【24h】

Filament Preserving Model (FPM) Segmentation Applied to SAR Sea-Ice Imagery

机译:细丝保存模型(FPM)分割应用于SAR海冰图像

获取原文
获取原文并翻译 | 示例

摘要

Modeling spatial context constraints using a Markov random field (MRF) has been widely used in the segmentation of noisy images. Its applicability to synthetic aperture radar (SAR) sea-ice segmentation has also been demonstrated recently. However, most existing MRF models are not capable of preserving filaments, specifically leads and ridges for SAR sea ice, which are valuable for ship navigation applications and necessary for identifying certain ice types. In this paper, a new statistical context model is proposed that, within the same scene, can simultaneously preserve narrow elongated features while producing similar smooth segmentation results comparable to typical MRF-based approaches. Tested on one synthetic image and two SAR sea-ice scenes, this filament preserving model substantially improves classification accuracies when compared to standard Gaussian mixture and MRF-based segmentation algorithms
机译:使用马尔可夫随机场(MRF)对空间上下文约束进行建模已广泛用于噪声图像的分割。最近还证明了其在合成孔径雷达(SAR)海冰分割中的适用性。但是,大多数现有的MRF模型都无法保存细丝,特别是用于SAR海冰的引线和脊,这对于船舶导航应用来说是有价值的,并且对于识别某些冰类型是必需的。在本文中,提出了一种新的统计上下文模型,该模型可以在同一场景中同时保留狭窄的拉长特征,同时产生与基于MRF的典型方法相当的平滑分割结果。通过在一个合成图像和两个SAR海冰场景上进行测试,与标准高斯混合算法和基于MRF的分割算法相比,这种长丝保存模型可以显着提高分类精度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号