首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
【24h】

An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery

机译:用于多/高光谱遥感影像的无监督人工免疫分类器

获取原文
获取原文并翻译 | 示例

摘要

A new method in computational intelligence namely artificial immune systems (AIS), which draw inspiration from the vertebrate immune system, have strong capabilities of pattern recognition. Even though AIS have been successfully utilized in several fields, few applications have been reported in remote sensing. Modern commercial imaging satellites, owing to their large volume of high-resolution imagery, offer greater opportunities for automated image analysis. Hence, we propose a novel unsupervised machine-learning algorithm namely unsupervised artificial immune classifier (UAIC) to perform remote sensing image classification. In addition to their nonlinear classification properties, UAIC possesses biological properties such as clonal selection, immune network, and immune memory. The implementation of UAIC comprises two steps: initially, the first clustering centers are acquired by randomly choosing from the input remote sensing image. Then, the classification task is carried out. This assigns each pixel to the class that maximizes stimulation between the antigen and the antibody. Subsequently, based on the class, the antibody population is evolved and the memory cell pool is updated by immune algorithms until the stopping criterion is met. The classification results are evaluated by comparing with four known algorithms: K-means, ISODATA, fuzzy K-means, and self-organizing map. It is shown that UAIC is an adaptive clustering algorithm, which outperforms other algorithms in all the three experiments we carried out.
机译:计算智能的一种新方法,即人工免疫系统(AIS),从脊椎动物的免疫系统中汲取灵感,具有强大的模式识别能力。尽管AIS已在多个领域中得到成功利用,但在遥感领域的应用却很少。由于大量的高分辨率图像,现代商业成像卫星为自动化图像分析提供了更大的机会。因此,我们提出了一种新颖的无监督机器学习算法,即无监督人工免疫分类器(UAIC)来进行遥感图像分类。 UAIC除了具有非线性分类特性外,还具有生物学特性,例如克隆选择,免疫网络和免疫记忆。 UAIC的实现包括两个步骤:首先,通过从输入的遥感图像中随机选择来获取第一聚类中心。然后,执行分类任务。这将每个像素分配到最大化抗原和抗体之间刺激的类别。随后,基于该类别,抗体群体得以进化,并且通过免疫算法更新存储单元池,直到满足停止标准为止。通过与四种已知算法进行比较来评估分类结果:K均值,ISODATA,模糊K均值和自组织映射。结果表明,UAIC是一种自适应聚类算法,在我们进行的所有三个实验中均优于其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号