首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >A Supervised Artificial Immune Classifier for Remote-Sensing Imagery
【24h】

A Supervised Artificial Immune Classifier for Remote-Sensing Imagery

机译:遥感影像的监督人工免疫分类器

获取原文
获取原文并翻译 | 示例

摘要

The artificial immune network (AIN), which is a new computational intelligence model based on artificial immune systems inspired by the vertebrate immune system, has been widely utilized for pattern recognition and data analysis. However, due to the inherent complexity of current AIN models, their application to remote-sensing image classification has been rather limited. This paper presents a novel supervised classification algorithm based on a multiple-valued immune network, which is a novel AIN model, to perform remote-sensing image classification. The proposed method trains the immune network using the samples of regions of interest and obtains an immune network with memory to classify the remote-sensing imagery. Two experiments with different types of images are performed to evaluate the performance of the proposed algorithm in comparison with other traditional image classification algorithms: Parallelepiped, Minimum Distance, Maximum Likelihood, and Back-Propagation Neural Network. The results evince that the proposed algorithm consistently outperforms the traditional algorithms in all the experiments and, hence, provides an effective option for processing remote-sensing imagery.
机译:人工免疫网络(AIN)是一种新的基于脊椎动物免疫系统启发的人工免疫系统的计算智能模型,已被广泛用于模式识别和数据分析。但是,由于当前AIN模型固有的复杂性,它们在遥感影像分类中的应用受到很大限制。本文提出了一种基于多值免疫网络的新型监督分类算法,该算法是一种新型的AIN模型,可以对遥感图像进行分类。所提出的方法使用感兴趣区域的样本训练免疫网络,并获得具有记忆的免疫网络以对遥感图像进行分类。与其他传统的图像分类算法(平行六面体,最小距离,最大似然和反向传播神经网络)相比,使用不同类型的图像进行了两次实验,以评估该算法的性能。结果表明,在所有实验中,所提出的算法始终优于传统算法,从而为处理遥感图像提供了有效的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号