首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis
【24h】

A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis

机译:一种用于多时相SAR图像变化检测的统计相似性度量新方法及其对多尺度变化分析的扩展

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new similarity measure for automatic change detection in multitemporal synthetic aperture radar images. This measure is based on the evolution of the local statistics of the image between two dates. The local statistics are estimated by using a cumulant-based series expansion, which approximates probability density functions in the neighborhood of each pixel in the image. The degree of evolution of the local statistics is measured using the Kullback–Leibler divergence. An analytical expression for this detector is given, allowing a simple computation which depends on the four first statistical moments of the pixels inside the analysis window only. The proposed change indicator is compared to the classical mean ratio detector and also to other model-based approaches. Tests on the simulated and real data show that our detector outperforms all the others. The fast computation of the proposed detector allows a multiscale approach in the change detection for operational use. The so-called multiscale change profile (MCP) is introduced to yield change information on a wide range of scales and to better characterize the appropriate scale. Two simple yet useful examples of applications show that the MCP allows the design of change indicators, which provide better results than a monoscale analysis.
机译:在本文中,我们提出了一种用于多时相合成孔径雷达图像中自动变化检测的新的相似性度量。此度量基于两个日期之间图像的局部统计量的演变。通过使用基于累积量的级数展开来估计局部统计量,该级数近似于图像中每个像素附近的概率密度函数。使用Kullback-Leibler散度来度量局部统计量的演变程度。给出了此检测器的解析表达式,可以进行简单的计算,该计算仅取决于分析窗口内像素的四个第一统计矩。所提出的变化指标与经典均值检测器以及其他基于模型的方法进行了比较。对模拟数据和真实数据的测试表明,我们的探测器性能优于其他所有探测器。所提出的检测器的快速计算允许在变化检测中采用多尺度方法进行操作使用。引入了所谓的多尺度变化曲线(MCP),以在广泛的尺度上产生变化信息,并更好地表征适当的尺度。两个简单而有用的应用示例表明,MCP允许设计变更指标,这比单尺度分析提供更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号