首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Road Network Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints
【24h】

Road Network Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints

机译:跟踪道路足迹从航空影像中提取路网和交叉口检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new two-step approach (detecting and pruning) for automatic extraction of road networks from aerial images is presented. The road detection step is based on shape classification of a local homogeneous region around a pixel. The local homogeneous region is enclosed by a polygon, called the footprint of the pixel. This step involves detecting road footprints, tracking roads, and growing a road tree. We use a spoke wheel operator to obtain the road footprint. We propose an automatic road seeding method based on rectangular approximations to road footprints and a toe-finding algorithm to classify footprints for growing a road tree. The road tree pruning step makes use of a Bayes decision model based on the area-to-perimeter ratio (the A/P ratio) of the footprint to prune the paths that leak into the surroundings. We introduce a lognormal distribution to characterize the conditional probability of A/P ratios of the footprints in the road tree and present an automatic method to estimate the parameters that are related to the Bayes decision model. Results are presented for various aerial images. Evaluation of the extracted road networks using representative aerial images shows that the completeness of our road tracker ranges from 84% to 94%, correctness is above 81%, and quality is from 82% to 92%.
机译:本文提出了一种新的两步法(检测和修剪),用于从航空影像中自动提取道路网络。道路检测步骤基于像素周围的局部均质区域的形状分类。局部均匀区域被多边形包围,称为像素足迹。此步骤涉及检测道路足迹,跟踪道路并种植道路树。我们使用辐条轮操作员来获取道路足迹。我们提出了一种基于道路足迹矩形近似的自动道路播种方法,以及一种用脚趾查找算法对道路足迹进行分类的方法,以生长道路树。道路树木修剪步骤利用基于足迹的面积/周长比(A / P比)的贝叶斯决策模型来修剪泄漏到周围环境中的路径。我们引入对数正态分布来表征路树中足迹的A / P比的条件概率,并提出一种自动方法来估计与贝叶斯决策模型相关的参数。给出了各种航空影像的结果。使用代表性的航空影像对提取的道路网络进行评估表明,我们的道路跟踪器的完整性范围为84%至94%,正确性高于81%,质量为82%至92%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号