首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Classification of Ground Clutter and Anomalous Propagation Using Dual-Polarization Weather Radar
【24h】

Classification of Ground Clutter and Anomalous Propagation Using Dual-Polarization Weather Radar

机译:使用双极化天气雷达对地物杂波和异常传播进行分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the results of a study designed to classify weather radar clutter echoes obtained from ground-based dual-polarization weather radar systems. The clutter signals are due to ground clutter, sea clutter, and anomalous propagation echoes, which represent sources of error in quantitative radar rainfall estimation. Fuzzy and Bayes classifiers are evaluated as an alternative approach to traditional polarimetric-based methods. Both systems were trained and validated by using C-band dual-polarization radar measurements, and a novel technique is proposed to calculate the texture function to mitigate against the edge effects at the boundaries of precipitation regions. A methodology is presented to extract the membership functions and conditional probability density functions to train the classifiers. The critical success index indicates that the Bayes classifier has, on average, a slightly better performance than the fuzzy classifiers. However, when optimal weighting was applied, the fuzzy classifier gave one of the best performances. The classifiers are sufficiently robust to be used when only single-polarization radar measurements are available.
机译:本文介绍了一项旨在对从地面双极化天气雷达系统获得的天气雷达杂波回波进行分类的研究结果。杂波信号是由于地面杂波,海杂波和异常传播回波引起的,它们代表了定量雷达降雨估计中的误差来源。模糊和贝叶斯分类器被评估为传统基于极化方法的替代方法。两种系统都使用C波段双极化雷达测量值进行了训练和验证,并提出了一种新的技术来计算纹理函数,以减轻降水区域边界处的边缘效应。提出了一种方法来提取隶属度函数和条件概率密度函数来训练分类器。关键成功指数表明,贝叶斯分类器的性能平均比模糊分类器略好。但是,当应用最佳加权时,模糊分类器给出了最佳性能之一。当仅单极化雷达测量可用时,分类器具有足够的鲁棒性,可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号