首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Decision Fusion With Confidence-Based Weight Assignment for Hyperspectral Target Recognition
【24h】

Decision Fusion With Confidence-Based Weight Assignment for Hyperspectral Target Recognition

机译:基于置信度权重的决策融合在高光谱目标识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Conventional hyperspectral image-based automatic target recognition (ATR) systems project high-dimensional reflectance signatures onto a lower dimensional subspace using techniques such as principal components analysis (PCA), Fisher''s linear discriminant analysis (LDA), and stepwise LDA. Typically, these feature space projections are suboptimal. In a typical hyperspectral ATR setup, the number of training signatures (ground truth) is often less than the dimensionality of the signatures. Standard dimensionality reduction tools such as LDA and PCA cannot be applied in such situations. In this paper, we present a divide-and-conquer approach that addresses this problem for robust ATR. We partition the hyperspectral space into contiguous subspaces based on the optimization of a performance metric. We then make local classification decisions in every subspace using a multiclassifier system and employ a decision fusion system for making the final decision on the class label. In this work, we propose a metric that incorporates higher order statistical information for accurate partitioning of the hyperspectral space. We also propose an adaptive weight assignment method in the decision fusion process based on the strengths (as measured by the training accuracies) of individual classifiers that made the local decisions. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies. The proposed system was found to significantly outperform conventional approaches. For example, under moderate pixel mixing, the proposed approach resulted in classification accuracies around 90%, where traditional feature fusion resulted in accuracies around 65%.
机译:常规的基于高光谱图像的自动目标识别(ATR)系统使用诸如主成分分析(PCA),Fisher线性判别分析(LDA)和逐步LDA等技术将高维反射率签名投影到低维子空间上。通常,这些特征空间投影不是最佳的。在典型的高光谱ATR设置中,训练签名(地面真相)的数量通常小于签名的维数。在这种情况下,不能使用标准的降维工具,例如LDA和PCA。在本文中,我们提出了一种分而治之的方法,可以解决鲁棒ATR的这一问题。基于性能指标的优化,我们将高光谱空间划分为连续的子空间。然后,我们使用多分类器系统在每个子空间中做出局部分类决策,并采用决策融合系统对类标签做出最终决策。在这项工作中,我们提出了一种度量,该度量合并了高阶统计信息以对高光谱空间进行精确划分。我们还在决策融合过程中根据做出本地决策的各个分类器的优势(通过训练准确性来衡量)提出一种自适应权重分配方法。使用具有已知地面真实性的高光谱数据对所提出的方法进行测试,从而可以根据目标识别的准确性对功效进行定量测量。发现拟议的系统明显优于常规方法。例如,在中等像素混合下,所提出的方法导致约90%的分类精度,而传统特征融合导致约65%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号