首页> 外文会议>Signal Processing, Sensor Fusion, and Target Recognition XVI; Proceedings of SPIE-The International Society for Optical Engineering; vol.6567 >Information Theoretic Partitioning and Confidence based Weight Assignment for Multi-Classifier Decision Level Fusion in Hyperspectral Target Recognition Applications
【24h】

Information Theoretic Partitioning and Confidence based Weight Assignment for Multi-Classifier Decision Level Fusion in Hyperspectral Target Recognition Applications

机译:高光谱目标识别应用中多分类器决策水平融合的信息理论划分和基于置信度的权重分配

获取原文
获取原文并翻译 | 示例

摘要

There is a growing interest in using multiple sources for automatic target recognition (ATR) applications. One approach is to take multiple, independent observations of a phenomenon and perform a feature level or a decision level fusion for ATR. This paper proposes a method to utilize these types of multi-source fusion techniques to exploit hyperspectral data when only a small number of training pixels are available. Conventional hyperspectral image based ATR techniques project the high dimensional reflectance signature onto a lower dimensional subspace using techniques such as Principal Components Analysis (PCA), Fisher's linear discriminant analysis (LDA), subspace LDA and stepwise LDA. While some of these techniques attempt to solve the curse of dimensionality, or small sample size problem, these are not necessarily optimal projections. In this paper, we present a divide and conquer approach to address the small sample size problem. The hyperspectral space is partitioned into contiguous subspaces such that the discriminative information within each subspace is maximized, and the statistical dependence between subspaces is minimized. We then treat each subspace as a separate source in a multi-source multi-classifier setup and test various decision fusion schemes to determine their efficacy. Unlike previous approaches which use correlation between variables for band grouping, we study the efficacy of higher order statistical information (using average mutual information) for a bottom up band grouping. We also propose a confidence measure based decision fusion technique, where the weights associated with various classifiers are based on their confidence in recognizing the training data. To this end, training accuracies of all classifiers are used for weight assignment in the fusion process of test pixels. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies.
机译:使用多个源进行自动目标识别(ATR)应用的兴趣日益浓厚。一种方法是对现象进行多次独立观察,并对ATR执行特征级别或决策级别融合。本文提出了一种在只有少量训练像素可用时利用这些类型的多源融合技术来利用高光谱数据的方法。常规的基于高光谱图像的ATR技术使用诸如主成分分析(PCA),费舍尔线性判别分析(LDA),子空间LDA和逐步LDA等技术将高维反射率签名投影到较低维子空间上。尽管其中一些技术试图解决维数或小样本量问题,但这些技术并不一定是最佳方案。在本文中,我们提出了一种分而治之的方法来解决小样本量问题。高光谱空间被划分为连续的子空间,从而使每个子空间内的判别信息最大化,并且子空间之间的统计依赖性最小。然后,在多源多分类器设置中,我们将每个子空间视为一个单独的源,并测试各种决策融合方案以确定它们的功效。与以前的使用变量之间的相关性进行分组的方法不同,我们研究了自下而上分组的高阶统计信息(使用平均互信息)的功效。我们还提出了一种基于置信度的决策融合技术,其中,与各种分类器相关的权重基于其对训练数据的认知度。为此,在测试像素的融合过程中,将所有分类器的训练精度用于权重分配。使用具有已知地面真实性的高光谱数据对所提出的方法进行测试,从而可以根据目标识别的准确性对功效进行定量测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号