首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Data-Level Fusion of Multilook Inverse Synthetic Aperture Radar Images
【24h】

Data-Level Fusion of Multilook Inverse Synthetic Aperture Radar Images

机译:多视点逆合成孔径雷达图像的数据级融合

获取原文
获取原文并翻译 | 示例

摘要

Although techniques for resolution enhancement in single-aspect radar imaging have made rapid progress in recent years, it does not necessarily imply that such enhanced images will improve target identification or recognition. However, when multiple looks of the same target from different aspects are obtained, the available knowledge increases, allowing more useful target information to be extracted. Physics-based image fusion techniques can be developed by processing the raw data collected from multiple inverse synthetic aperture radar sensors, even if these individual images are at different resolutions. We derive an appropriate data fusion rule to generate a composite image containing enhanced target shape characteristics for improved target recognition. The rule maps multiple data sets collected by multiple radars with different system parameters on to the same spatial–frequency space. The composite image can be reconstructed using the inverse 2-D Fourier transform over the separated multiple integration areas. An algorithm called the Matrix Fourier Transform is proposed to realize such a complicated integral. This algorithm can be regarded as an exact interpolation such that there is no information loss caused by data fusion. The rotation centers need to be carefully selected to properly register the multiple images before performing the fusion. A comparison of the image attribute rating curve between the fused image and the spatially averaged images quantifies the improvement in the detected target features. The technique shows considerable improvement over a simple spatial averaging algorithm and thereby enhances target recognition.
机译:尽管近年来在单方面雷达成像中提高分辨率的技术取得了飞速发展,但这并不一定意味着这种增强后的图像将改善目标识别或识别。但是,当从不同方面获得同一目标的多个外观时,可用知识会增加,从而可以提取更多有用的目标信息。通过处理从多个逆合成孔径雷达传感器收集的原始数据,即使这些单个图像的分辨率不同,也可以开发基于物理的图像融合技术。我们导出适当的数据融合规则以生成包含增强的目标形状特征以改善目标识别的合成图像。该规则将由具有不同系统参数的多个雷达收集的多个数据集映射到相同的空间频率空间。可以使用反二维傅立叶变换在分离的多个积分区域上重建合成图像。提出了一种称为矩阵傅立叶变换的算法来实现这种复杂的积分。该算法可以看作是精确的插值,因此不会由于数据融合而导致信息丢失。在执行融合之前,需要仔细选择旋转中心以正确配准多个图像。融合图像和空间平均图像之间图像属性评级曲线的比较量化了检测到的目标特征的改善。与简单的空间平均算法相比,该技术显示出相当大的改进,从而增强了目标识别能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号