首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design
【24h】

Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design

机译:利用云解析数字天气预报模型训练的全球毫米波降水检索,第一部分:检索设计

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a global precipitation rate retrieval algorithm for the Advanced Microwave Sounding Unit (AMSU), which observes 23–191 GHz. The algorithm was trained using a numerical weather prediction (NWP) model (MM5) for 106 globally distributed storms that predicted brightness temperatures consistent with those observed simultaneously by AMSU. Neural networks were trained to retrieve hydrometeor water-paths, peak vertical wind, and 15-min average surface precipitation rates for rain and snow at 15-km resolution at all viewing angles. Different estimators were trained for land and sea, where surfaces classed as snow or ice were generally excluded from this paper. Surface-sensitive channels were incorporated by using linear combinations [principal components (PCs)] of their brightness temperatures that were observed to be relatively insensitive to the surface, as determined by visual examination of global images of each brightness temperature spectrum PC. This paper also demonstrates that multiple scattering in high microwave albedo clouds may help explain the observed consistency for a global set of 122 storms between AMSU-observed 50–191-GHz brightness temperature distributions and corresponding distributions predicted using a cloud-resolving mesoscale NWP model (MM5) and a two-stream radiative transfer model that models icy hydrometeors as spheres with frequency-dependent densities. The AMSU/MM5 retrieval algorithm developed in Part I of this paper is evaluated in Part II on a separate paper.
机译:本文为高级微波探测单元(AMSU)开发了一种全球降水速率检索算法,该算法观测到23–191 GHz。使用数值天气预报(NWP)模型(MM5)对106个全球分布的风暴进行了算法训练,这些风暴预测的亮度温度与AMSU同时观测到的温度一致。对神经网络进行了训练,以在所有视角下以15 km的分辨率检索水流星雨的水径,峰值垂直风以及15分钟的平均降雨和降雪速率。针对陆地和海洋对不同的估计量进行了训练,本文一般不包括归类为雪或冰的地表。表面敏感通道通过使用其亮度温度的线性组合[主要成分(PC)]并入,观察到对表面相对不敏感,这是通过对每个亮度温度光谱PC的全局图像进行目视检查确定的。本文还证明,在高微波反照率云中的多次散射可能有助于解释在AMSU观测到的50-191 GHz亮度温度分布与使用云解析中尺度NWP模型预测的相应分布之间的全球122次风暴集合的观测一致性( MM5)和两流辐射传输模型,该模型将冰状水凝物模拟为具有频率相关密度的球体。在第一部分中开发的AMSU / MM5检索算法在另一部分的第二部分中进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号