首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Multiobjective Genetic SVM Approach for Classification Problems With Limited Training Samples
【24h】

A Multiobjective Genetic SVM Approach for Classification Problems With Limited Training Samples

机译:训练样本有限的分类问题的多目标遗传SVM方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel method for semisupervised classification with limited training samples is presented. Its aim is to exploit unlabeled data available at zero cost in the image under analysis for improving the accuracy of a classification process based on support vector machines (SVMs). It is based on the idea to augment the original set of training samples with a set of unlabeled samples after estimating their label. The label estimation process is performed within a multiobjective genetic optimization framework where each chromosome of the evolving population encodes the label estimates as well as the SVM classifier parameters for tackling the model selection issue. Such a process is guided by the joint minimization of two different criteria which express the generalization capability of the SVM classifier. The two explored criteria are an empirical risk measure and an indicator of the classification model sparseness, respectively. The experimental results obtained on two multisource remote sensing data sets confirm the promising capabilities of the proposed approach, which allows the following: 1) taking a clear advantage in terms of classification accuracy from unlabeled samples used for inflating the original training set and 2) solving automatically the tricky model selection issue.
机译:本文提出了一种在训练样本有限的情况下进行半监督分类的新方法。其目的是在分析图像中利用零成本的未标记数据,以提高基于支持向量机(SVM)的分类过程的准确性。它基于这样的想法:在估计训练样本的标签后,用一组未标记的样本扩充原始训练样本集。标签估计过程是在多目标遗传优化框架内执行的,其中进化种群的每个染色体都对标签估计以及用于解决模型选择问题的SVM分类器参数进行编码。这样的过程由两个最小标准的联合最小化指导,这两个标准表达了SVM分类器的泛化能力。探索的两个标准分别是经验风险度量和分类模型稀疏性的指标。在两个多源遥感数据集上获得的实验结果证实了该方法的有前途的功能,该方法可以实现以下目的:1)在用于扩大原始训练集的未标记样本的分类准确性方面拥有明显优势,以及2)求解自动解决棘手的模型选择问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号