首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
【24h】

Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle

机译:热和窄带多光谱遥感用于无人机的植被监测

获取原文
获取原文并翻译 | 示例

摘要

Two critical limitations for using current satellite sensors in real-time crop management are the lack of imagery with optimum spatial and spectral resolutions and an unfavorable revisit time for most crop stress-detection applications. Alternatives based on manned airborne platforms are lacking due to their high operational costs. A fundamental requirement for providing useful remote sensing products in agriculture is the capacity to combine high spatial resolution and quick turnaround times. Remote sensing sensors placed on unmanned aerial vehicles (UAVs) could fill this gap, providing low-cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions. This paper demonstrates the ability to generate quantitative remote sensing products by means of a helicopter-based UAV equipped with inexpensive thermal and narrowband multispectral imaging sensors. During summer of 2007, the platform was flown over agricultural fields, obtaining thermal imagery in the 7.5–13-$muhbox{m}$ region (40-cm resolution) and narrowband multispectral imagery in the 400–800-nm spectral region (20-cm resolution). Surface reflectance and temperature imagery were obtained, after atmospheric corrections with MODTRAN. Biophysical parameters were estimated using vegetation indices, namely, normalized difference vegetation index, transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index, and photochemical reflectance index (PRI), coupled with SAILH and FLIGHT models. As a result, the image products of leaf area index, chlorophyll content $(C_{rm ab})$, and water stress detection from PRI index and canopy temperature were produced and successfully validated. This paper demonstrates that results obtained with a low-cost UAV syste-n-nm for agricultural applications yielded comparable estimations, if not better, than those obtained by traditional manned airborne sensors.
机译:在实时作物管理中使用当前卫星传感器的两个关键限制是缺乏具有最佳空间和光谱分辨率的图像,以及大多数作物压力检测应用中不利的重访时间。由于其高昂的运营成本,缺少基于载人机载平台的替代方案。在农业中提供有用的遥感产品的基本要求是能够兼具高空间分辨率和快速周转时间的能力。放置在无人飞行器(UAV)上的遥感传感器可以填补这一空白,提供低成本的方法来满足空间,光谱和时间分辨率的关键要求。本文演示了借助配备廉价热和窄带多光谱成像传感器的基于直升机的无人机产生定量遥感产品的能力。在2007年夏季,该平台在农业领域上空飞行,在7.5-13- $ muhbox {m} $区域(40-cm分辨率)中获得了热成像,并在400-800nm光谱区域中获得了窄带多光谱成像(20 -cm分辨率)。在用MODTRAN进行大气校正后,获得了表面反射率和温度图像。利用植被指数,即归一化差异植被指数,反射系数/优化土壤调整植被指数中的叶绿素吸收转化率和光化学反射指数(PRI)以及SAILH和FLIGHT模型,估算生物物理参数。结果,产生并成功验证了叶面积指数,叶绿素含量$(C_ {rm ab})$,以及根据PRI指数和冠层温度进行的水分胁迫检测的图像产物。本文证明,用低成本的无人机系统n-nm用于农业应用所获得的结果与传统的载人机载传感器所获得的估计相比,即使不是更好,也可以得出可比的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号