首页> 外文会议>2012 4th Workshop on Hyperspectral Image and Signal Processing >Unmanned aerial vehicle (UAV) hyperspectral remote sensing for dryland vegetation monitoring
【24h】

Unmanned aerial vehicle (UAV) hyperspectral remote sensing for dryland vegetation monitoring

机译:无人机高光谱遥感,用于旱地植被监测

获取原文
获取原文并翻译 | 示例

摘要

UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. In many cases, the supervised classifications accentuated noise or features in the mosaic that were artifacts of color balancing and “feathering” areas of flightline overlap. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus).
机译:由爱达荷州国家实验室和爱达荷州立大学博伊西中心航空航天实验室开发的基于无人机的高光谱遥感功能最近通过演示飞行进行了测试,该飞行探索了海拔对几何误差,图像镶嵌和旱地植被分类的影响。试飞成功获取了能够支持可分类合成图像的可用飞行路线数据。无监督分类结果支持了依赖于灌木覆盖和分布模式的植被管理目标。总体而言,尽管在源自图像的端成员像素中具有光谱可分离性,但监督分类的效果仍然很差。在许多情况下,监督分类会加剧马赛克中的噪声或特征,这些噪声或特征是色彩平衡的伪影和飞行路线重叠的“羽化”区域。利用地面参考数据,超高空间分辨率照片和时间序列分析的未来制图工作应该能够有效地区分诸如桑德伯格蓝草(Poa secunda)之类的原生草与毛刺毛butter(Ranunculus testiculatus)之类的侵入性植物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号