首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components
【24h】

A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components

机译:存在稀有信号分量时高光谱图像信号子空间鲁棒估计的新算法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problem of signal subspace estimation for dimensionality reduction (DR) in hyperspectral images in the presence of rare pixels, i.e., pixels that are scarcely represented in the image and containing spectral components that are linearly independent of the background. Most of the classical methods proposed in the literature are based on the analysis of second-order statistics (SOS), which are weakly influenced by the rare signals. Therefore, such techniques estimate the signal subspace addressing mostly the background and ignoring the presence of rare pixels. This may reduce the target/background spectral contrast, thus decreasing the detection performance when DR is adopted as preprocessing task in small-target detection applications. In this paper, a new robust algorithm, namely, robust signal subspace estimation (RSSE), is developed, which preserves both abundant and rare signal components. It combines the analysis of SOS and a recent approach based on the analysis of the $l_{2}^{infty}$ norm. The novel contribution of this paper is twofold. First, the RSSE algorithm is presented, which includes a new iterative procedure to derive the signal subspace and an original statistical method to estimate the data dimensionality. Second, an ad hoc simulation strategy is proposed to assess the performance of signal subspace estimation methods in the presence of rare signal components. The procedure is adopted to compare the RSSE algorithm with a classical technique based on the analysis of SOS. The results obtained by applying the two methods on a real Airborne Visible Infrared Imaging Spectrometer hyperspectral image are also presented and discussed.
机译:本文讨论了在存在稀有像素(即图像中几乎不表示且包含线性独立于背景的光谱分量的像素)的情况下高光谱图像中降维(DR)的信号子空间估计问题。文献中提出的大多数经典方法都是基于对二阶统计量(SOS)的分析,该统计量很少受到稀有信号的影响。因此,这样的技术估计主要针对背景并且忽略稀有像素的存在的信号子空间。这可能会降低目标/背景光谱对比度,从而在小目标检测应用中将DR用作预处理任务时降低检测性能。本文提出了一种新的鲁棒算法,即鲁棒信号子空间估计(RSSE),它既保留了丰富的信号分量,又保留了稀有的信号分量。它结合了SOS的分析和基于对$ l_ {2} ^ {infty} $规范的分析的最新方法。本文的新颖贡献是双重的。首先,提出了RSSE算法,该算法包括一个新的迭代过程来导出信号子空间,以及一种原始的统计方法来估计数据维数。其次,提出了一种特殊的仿真策略来评估在稀有信号分量存在下信号子空间估计方法的性能。在分析SOS的基础上,采用该程序将RSSE算法与经典技术进行比较。还将介绍和讨论通过在真实的机载可见光红外光谱仪高光谱图像上应用这两种方法获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号