首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs
【24h】

Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs

机译:基于SVM和SONs的多光谱卫星影像分类的不确定度分析。

获取原文
获取原文并翻译 | 示例

摘要

Classification of multispectral remotely sensed data with textural features is investigated with a special focus on uncertainty analysis in the produced land-cover maps. Much effort has already been directed into the research of satisfactory accuracy-assessment techniques in image classification, but a common approach is not yet universally adopted. We look at the relationship between hard accuracy and the uncertainty on the produced answers, introducing two measures based on maximum probability and $alpha$ quadratic entropy. Their impact differs depending on the type of classifier. In this paper, we deal with two different classification strategies, based on support vector machines (SVMs) and Kohonen's self-organizing maps (SOMs), both suitably modified to give soft answers. Once the multiclass probability answer vector is available for each pixel in the image, we studied the behavior of the overall classification accuracy as a function of the uncertainty associated with each vector, given a hard-labeled test set. The experimental results show that the SVM with one-versus-one architecture and linear kernel clearly outperforms the other supervised approaches in terms of overall accuracy. On the other hand, our analysis reveals that the proposed SOM-based classifier, despite its unsupervised learning procedure, is able to provide soft answers which are the best candidates for a fusion with supervised results.
机译:研究了具有纹理特征的多光谱遥感数据的分类,并特别着重于生产的土地覆盖图的不确定性分析。对于图像分类中令人满意的精度评估技术的研究已经进行了很多努力,但是尚未普遍采用一种通用方法。我们着眼于硬性准确性与所产生答案的不确定性之间的关系,介绍了两种基于最大概率和$α$二次熵的度量。它们的影响因分类器的类型而异。在本文中,我们基于支持向量机(SVM)和Kohonen的自组织图(SOM)处理两种不同的分类策略,均对其进行了适当的修改以给出软答案。一旦多类别概率答案向量可用于图像中的每个像素,我们将在给定硬标签测试集的情况下研究整体分类准确性的行为,该行为是与每个向量相关的不确定性的函数。实验结果表明,具有一对一体系结构和线性核的SVM在总体准确性方面明显优于其他监督方法。另一方面,我们的分析表明,尽管提出了基于SOM的分类器,但该分类器具有无监督的学习程序,却能够提供软答案,这是融合有监督结果的最佳人选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号