首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Quality Prediction Method for Building Model Reconstruction Using LiDAR Data and Topographic Maps
【24h】

A Quality Prediction Method for Building Model Reconstruction Using LiDAR Data and Topographic Maps

机译:利用LiDAR数据和地形图重建建筑模型的质量预测方法

获取原文
获取原文并翻译 | 示例

摘要

This paper integrates light detection and ranging (LiDAR) data and topographic maps and predicts the quality of 3-D building model reconstruction. In this paper, the tensor voting algorithm and a region-growing method are adopted to extract building roof planes and structural lines from LiDAR data, and a robust least squares method is applied to register LiDAR data with building outlines obtained from topographic maps. The minimal square sum of the separations of the most peripheral points to building outlines is adopted as the criterion for determining the transformation parameters in order to improve the efficiency of data fusion. After registration, a novel quality indicator of data fusion based on the tensor analysis of residuals is derived in order to evaluate the quality of the automatic reconstruction of 3-D building models. Finally, an actual LiDAR data set and its corresponding topographic map demonstrate the fusion procedure and the quality of the predictions related to automatic model reconstruction.
机译:本文整合了光检测和测距(LiDAR)数据以及地形图,并预测了3D建筑模型重建的质量。本文采用张量投票算法和区域增长方法从LiDAR数据中提取建筑物屋顶平面和结构线,并应用鲁棒最小二乘法将L​​iDAR数据与从地形图获得的建筑物轮廓进行配准。采用最外围点与建筑物轮廓的间隔的最小平方和作为确定转换参数的标准,以提高数据融合的效率。注册后,基于残差的张量分析得出了一种新的数据融合质量指标,以评估3D建筑模型自动重建的质量。最后,实际的LiDAR数据集及其相应的地形图证明了融合过程和与自动模型重建有关的预测的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号