首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >An Adaptive Method of Speckle Reduction and Feature Enhancement for SAR Images Based on Curvelet Transform and Particle Swarm Optimization
【24h】

An Adaptive Method of Speckle Reduction and Feature Enhancement for SAR Images Based on Curvelet Transform and Particle Swarm Optimization

机译:基于Curvelet变换和粒子群优化的自适应SAR图像斑点去斑和特征增强方法。

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an adaptive method based on the mirror-extended curvelet transform and the improved particle swarm optimization (PSO) algorithm, which reduce speckle noise and enhance edge features and contrast of synthetic aperture radar (SAR) images. First, an improved gain function, which integrates the speckle reduction with the feature enhancement, is introduced to nonlinearly shrink and stretch the curvelet coefficients. Then, a novel objective criterion for the quality of the despeckled and enhanced images is proposed in order to adaptively obtain the optimal parameters in the gain function. Finally, the PSO algorithm is employed as a global search strategy for the best despeckled and enhanced image. In order to increase the convergence speed and avoid the premature convergence, two further improvements for the classic PSO algorithm are presented. That is, a new learning scheme and a mutation operator are introduced. Experimental results demonstrate that the proposed method can efficiently reduce the speckle and enhance the edge features and the contrast of SAR images and outperforms the wavelet- and curvelet-based nonadaptive despeckling and enhancement methods.
机译:本文提出了一种基于镜像扩展Curvelet变换和改进的粒子群算法(PSO)的自适应方法,该方法可以减少斑点噪声,增强合成孔径雷达(SAR)图像的边缘特征和对比度。首先,引入了一种改进的增益函数,该函数将斑点减少与特征增强相结合,以非线性方式收缩和拉伸Curvelet系数。然后,针对去斑和增强图像的质量提出了一种新颖的客观标准,以自适应地获得增益函数中的最佳参数。最后,PSO算法被用作针对最佳去斑和增强图像的全局搜索策略。为了提高收敛速度并避免过早收敛,针对经典PSO算法提出了两个进一步的改进。即,引入了新的学习方案和变异算子。实验结果表明,所提出的方法可以有效地减少斑点,增强SAR图像的边缘特征和对比度,并且优于基于小波和曲线的非自适应去斑和增强方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号