首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Segmentation of Hyperspectral Images via Subtractive Clustering and Cluster Validation Using One-Class Support Vector Machines
【24h】

Segmentation of Hyperspectral Images via Subtractive Clustering and Cluster Validation Using One-Class Support Vector Machines

机译:通过减法聚类和使用一类支持向量机的聚类验证对高光谱图像进行分割

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an unsupervised hyperspectral image segmentation with a new subtractive-clustering-based similarity segmentation and a novel cluster validation method using one-class support vector (SV) machine (OC-SVM). An estimation of the correct number of clusters is an important task in hyperspectral image segmentation. The proposed cluster validity measure is based on the power of spectral discrimination (PWSD) measure and utilizes the advantage of the inherited cluster contour definition feature of OC-SVM. Hence, this novel cluster validity method is referred to as SV-PWSD. SVs found by OC-SVM are located at the minimum distance to the hyperplane in the feature space and at the arbitrarily shaped cluster contours in the input space. SV-PWSD guides the segmentation/clustering process to find the optimal number of clusters in hyperspectral data. Because of the high computational load of subtractive clustering and OC-SVM, a subset of the image (only ground-truth data) is initially used in the clustering and validation phases. Then, it is proposed to use $K$-nearest neighbor classification, with the already clustered subset being used as training data, to project the initial clustering results onto the entire data set.
机译:本文提出了一种基于新减法聚类的相似度分割和使用一类支持向量机(OC-SVM)的新型聚类验证方法的无监督高光谱图像分割。在高光谱图像分割中,估计正确的聚类数量是一项重要的任务。提出的聚类有效性度量基于频谱鉴别(PWSD)度量的功效,并利用了OC-SVM继承的聚类轮廓定义功能的优势。因此,这种新颖的群集有效性方法称为SV-PWSD。 OC-SVM发现的SV位于特征空间中距超平面的最小距离,并且位于输入空间中任意形状的簇轮廓。 SV-PWSD指导分段/聚类过程,以在高光谱数据中找到最佳聚类数。由于减法聚类和OC-SVM的计算量很大,因此在聚类和验证阶段最初使用了图像的子集(仅地面数据)。然后,建议使用$ K $最近邻分类,将已经聚类的子集用作训练数据,以将初始聚类结果投影到整个数据集上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号