首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Incorporating Uncertainty in Unexploded Ordnance Discrimination
【24h】

Incorporating Uncertainty in Unexploded Ordnance Discrimination

机译:将不确定性纳入未爆炸弹药歧视

获取原文
获取原文并翻译 | 示例

摘要

We examine representations of feature vector uncertainty in the context of unexploded ordnance (UXO) discrimination with electromagnetic data. We compare a local uncertainty estimate derived from the curvature of the misfit function with global estimates of the model posterior probability density (PPD) obtained with Markov chain sampling. For well-posed experiments (i.e., with high SNR and adequate spatial coverage), the two methods of uncertainty appraisal agree. However, when the inverse problem is ill posed, we find out that the PPD can be multimodal. To incorporate these uncertainties in discrimination, we first develop an extension of discriminant analysis which integrates over the posterior distribution of the model. When dealing with multimodal PPDs, we show that an effective solution is to input all modes of the PPD—corresponding to all models at local minima of the misfit—into discrimination and, then, to classify on the basis of the model which is most likely a UXO.
机译:我们在电磁数据与未爆炸弹药(UXO)鉴别的背景下研究了特征向量不确定性的表示形式。我们将源自失配函数曲率的局部不确定性估计与通过马尔可夫链采样获得的模型后验概率密度(PPD)的全局估计进行比较。对于状态良好的实验(即具有较高的SNR和足够的空间覆盖范围),不确定性评估的两种方法都可以达成共识。但是,当提出反问题时,我们发现PPD可以是多峰的。为了将这些不确定性纳入歧视中,我们首先开发了判别分析的扩展,该判别分析整合了模型的后验分布。当处理多峰PPD时,我们表明一种有效的解决方案是将PPD的所有模式(对应于失配的局部最小值处的所有模型)输入到歧视中,然后基于最有可能的模型进行分类UXO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号