首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Synthesis of Remote Sensing Label Fields Using a Tree-Structured Hierarchical Model
【24h】

Synthesis of Remote Sensing Label Fields Using a Tree-Structured Hierarchical Model

机译:利用树结构层次模型合成遥感标签场

获取原文
获取原文并翻译 | 示例

摘要

The systematic evaluation of synthetic aperture radar (SAR) data analysis tools, such as segmentation and classification algorithms for geographic information systems, is difficult given the unavailability of ground-truth data in most cases. Therefore, testing is typically limited to small sets of pseudoground-truth data collected manually by trained experts, or primitive synthetic sets composed of simple geometries. To address this issue, we investigate the potential of employing an alternative approach, which involves the synthesis of SAR data and corresponding label fields from real SAR data for use as a reliable evaluation testbed. Given the scale-dependent nonstationary nature of SAR data, a new modeling approach that combines a resolution-oriented hierarchical method with a region-oriented binary tree structure is introduced to synthesize such complex data in a realistic manner. Experimental results using operational RADARSAT SAR sea-ice data and SIR-C/X-SAR land-mass data show that the proposed hierarchical approach can better model complex nonstationary scale structures than local MRF approaches and existing nonparametric methods, thus making it well suited for synthesizing SAR data and the corresponding label fields for potential use in the systematic evaluation of SAR data analysis tools.
机译:鉴于大多数情况下地面数据的可用性,很难对合成孔径雷达(SAR)数据分析工具(例如地理信息系统的分割和分类算法)进行系统评估。因此,测试通常限于由训练有素的专家手动收集的少量伪地面真相数据,或由简单几何构成的原始合成集。为解决此问题,我们研究了采用替代方法的潜力,该方法涉及从真实SAR数据合成SAR数据和相应的标签字段,以用作可靠的评估测试台。考虑到SAR数据的尺度依赖性非平稳性质,引入了一种新的建模方法,该方法将面向分辨率的分层方法与面向区域的二叉树结构相结合,以逼真的方式合成了此类复杂数据。使用可操作的RADARSAT SAR海冰数据和SIR-C / X-SAR陆地质量数据的实验结果表明,与局部MRF方法和现有的非参数方法相比,所提出的分层方法可以更好地对复杂的非平稳尺度结构进行建模,因此非常适合于合成SAR数据和相应的标签字段,可在SAR数据分析工具的系统评估中潜在使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号