首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Best Merge Region-Growing Segmentation With Integrated Nonadjacent Region Object Aggregation
【24h】

Best Merge Region-Growing Segmentation With Integrated Nonadjacent Region Object Aggregation

机译:集成不相邻区域对象聚合的最佳合并区域增长分割

获取原文
获取原文并翻译 | 示例

摘要

Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with nonadjacent region object aggregation, which we call hierarchical segmentation or HSeg. However, the original implementation of nonadjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper, we introduce a refined implementation of nonadjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg's region intercomparisons among nonadjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.
机译:最佳合并区域增长通常会产生具有封闭的连通区域对象的分割。认识到光谱相似的对象通常出现在空间上分开的位置,我们提出了一种方法,用于将最佳合并区域的增长与不相邻区域的对象聚合紧密集成在一起,这称为分层分割或HSeg。但是,由于每个区域与所有其他区域之间需要进行比较,因此即使对于中等大小的图像,HSeg中非相邻区域对象聚合的原始实现也需要大量的计算时间。以前,通过HSeg的递归近似(称为RHSeg)解决了该问题。在本文中,我们介绍了HSeg中非相邻区域对象聚合的改进实现,该实现降低了HSeg的计算要求,而无需求助于递归近似。在该改进方案中,HSeg的在不相邻区域之间的区域比较限于动态确定的最小尺寸的区域。我们表明,HSeg的改进版本可以在与合并原始HSeg的RHSeg相同的时间内处理中等大小的图像。但是,由于其较低的计算机内存要求和对并行处理的适应性,仍然需要RHSeg处理非常大的图像。然后,我们注意到RHSeg对于高空间分辨率图像具有原始HSeg的局限性,并显示了如何将精炼的HSeg合并到RHSeg中来克服此局限性。然后,将经过精炼的HSeg生成的图像分割质量与其他可用的最佳合并分割方法进行比较。最后,我们对HSeg产生的分层细分的独特性质进行评论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号