首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A New Statistical-Based Kurtosis Wavelet Energy Feature for Texture Recognition of SAR Images
【24h】

A New Statistical-Based Kurtosis Wavelet Energy Feature for Texture Recognition of SAR Images

机译:基于统计的峰度小波能量特征在SAR图像纹理识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient algorithm for texture recognition of synthetic aperture radar (SAR) images is developed based on wavelet transform as a feature extraction tool and support vector machine (SVM) as a classifier. SAR image segmentation is an important step in texture recognition of SAR images. SAR images cannot be segmented successfully by using traditional methods because of the existence of speckle noise in SAR images. The algorithm, proposed in this paper, extracts the texture feature by using wavelet transform; then, it forms a feature vector composed of kurtosis value of wavelet energy feature of SAR image. In the next step, segmentation of different textures is applied by using feature vector and level set function. At last, an SVM classifier is designed and trained by using normalized feature vectors of each region texture. The testing sets of SAR images are segmented by this trained SVM. Experimental results on both agricultural and urban SAR images show that the proposed algorithm is effective for classification of different textures in SAR images, and it is also insensitive to the intensity.
机译:本文以小波变换为特征提取工具,以支持向量机为分类器,提出了一种合成孔径雷达图像纹理识别的有效算法。 SAR图像分割是SAR图像纹理识别的重要步骤。由于SAR图像中存在斑点噪声,因此无法通过传统方法成功分割SAR图像。本文提出的算法通过小波变换提取纹理特征。然后,形成一个由SAR图像的小波能量特征峰度值组成的特征向量。下一步,通过使用特征向量和水平集功能对不同纹理进行分割。最后,通过使用每个区域纹理的归一化特征向量来设计和训练SVM分类器。 SAR图像的测试集由经过训练的SVM进行了分割。在农业和城市SAR图像上的实验结果表明,该算法对SAR图像中不同纹理的分类是有效的,并且对强度不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号