首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >New Improvements in Parallel Implementation of N-FINDR Algorithm
【24h】

New Improvements in Parallel Implementation of N-FINDR Algorithm

机译:N-FINDR算法并行实现的新改进

获取原文
获取原文并翻译 | 示例

摘要

Endmember extraction (EE) is the first step in hyperspectral data unmixing. N-FINDR is one of the most commonly used EE algorithms. Nevertheless, its computational complexity is high, particularly, for a large data set. Following a parallel version of N-FINDR, i.e., P-FINDR, further improvements are presented in this paper. First, generic endmember re-extraction operation (GERO) and multiple search paths are introduced such that multiple endmembers are extracted in parallel. Second, by making full use of the advantages of the proposed algorithms, two extended schemes, i.e., extended mapping rule and multiple-stage GERO are presented, which can reduce synchronous cost and provide steady parallel performance. In experiments, the proposed algorithms have been quantitatively evaluated. The results demonstrate that they can outperform the conventional parallel computing and do not degrade the quality of EE.
机译:最终成员提取(EE)是高光谱数据分解的第一步。 N-FINDR是最常用的EE算法之一。但是,它的计算复杂度很高,尤其是对于大型数据集。遵循并行版本的N-FINDR,即P-FINDR,本文提出了进一步的改进。首先,引入通用端成员重新提取操作(GERO)和多个搜索路径,以便并行提取多个端成员。其次,通过充分利用所提出算法的优点,提出了两种扩展方案,即扩展映射规则和多级GERO,它们可以降低同步成本并提供稳定的并行性能。在实验中,对提出的算法进行了定量评估。结果表明,它们可以胜过传统的并行计算,并且不会降低EE的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号