首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Increasing Robustness of Postclassification Change Detection Using Time Series of Land Cover Maps
【24h】

Increasing Robustness of Postclassification Change Detection Using Time Series of Land Cover Maps

机译:利用土地覆盖图的时间序列提高后分类变化检测的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

The monitoring of land cover requires that stable land cover classes be distinguished from changes over time. Within this paper, a postclassification method is presented that provides land cover change information, based on a time series of land cover maps. The method applies a kernel filter to sequential land cover maps. Under some basic assumptions, it shows robustness against classification errors. Despite seasonality, land cover changes often occur at a low temporal frequency (e.g., maximum once every 5–10 years). If land cover maps are available more frequently, some of the information will become redundant (oversampling). The proposed method uses this redundancy for tolerating (nonsystematic) misclassifications. In order to demonstrate the benefits and limitations of the proposed method, analytical expressions have been derived. When compared to a simple postclassification comparison, one of the key strengths of the proposed approach is that it is able to improve both the overall and user's accuracy of change, while also maintaining the same level of producer's accuracy. As a case study, MODerate Resolution Imaging Spectroradiometer remote sensing data from 2006-2010 were classified into forest (F)onforest (NF) at pan-European scale. Promising results were obtained for detecting forest loss due to natural disasters. Quality was assessed using burnt area maps in southern Europe and a forest damage report after a windstorm in France. Results indicated a considerable reduction of change detection errors, confirming the theoretical results.
机译:土地覆盖的监测要求将稳定的土地覆盖类别与随时间的变化区分开来。在本文中,提出了一种后分类方法,该方法基于土地覆盖图的时间序列提供土地覆盖变化信息。该方法将内核过滤器应用于顺序的土地覆盖图。在一些基本假设下,它显示出对分类错误的鲁棒性。尽管有季节性,土地覆被变化通常以较低的时间频率发生(例如,每5-10年最多发生一次)。如果可以更频繁地获得土地覆盖图,则某些信息将变得多余(过采样)。所提出的方法使用这种冗余来容忍(非系统的)错误分类。为了证明所提出方法的好处和局限性,已经得出了分析表达式。与简单的分类后比较相比,该方法的主要优势之一是,它既可以提高总体和用户变更的准确性,又可以保持相同水平的生产者准确性。作为案例研究,以泛欧尺度将2006-2010年的MODerate分辨率成像光谱仪遥感数据分类为森林(F)/非森林(NF)。为检测自然灾害造成的森林损失获得了有希望的结果。使用南部欧洲的烧毁面积图和法国发生暴风雨后的森林破坏报告对质量进行了评估。结果表明,变化检测错误显着减少,证实了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号