首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Robust Motion Error Estimation Method Based on Raw Data
【24h】

A Robust Motion Error Estimation Method Based on Raw Data

机译:基于原始数据的鲁棒运动误差估计方法

获取原文
获取原文并翻译 | 示例

摘要

High-resolution airborne synthetic aperture radar (SAR) systems are very sensible to deviations of the aircraft from the reference track. In high-resolution imagery, the improvement of range resolution increases the difficulty of implementing range cell migration correction (RCMC), while a wider synthetic aperture increases the cumulative time of motion errors which will affect the image quality. To enable accurate motion compensation in image processing, a high-precision navigation system is needed. However, in many cases, due to the limit of accuracy of such systems, motion errors are hard to be compensated correctly, causing mainly the resolution decrease in final image. Moreover, in large swath mode, the range-dependent phase errors are difficult to be compensated by using the conventional autofocus algorithm only. In this paper, we propose a robust motion error estimation method based on raw SAR data. To apply this estimation method, we first estimate the double phase gradients in subaperture. Second, a filtering method based on curve fitting was proposed to reduce the phase estimation errors caused by low signal-to-clutter ratio (SCR). Finally, we propose a weighted total least square method to calculate the motion errors using the filtered phase gradients. Because the proposed algorithm is nonparametric, it can estimate high-order motion errors. This is very important for the airborne SAR, particularly the light aircraft SAR platform, due to their more complicated movement in air turbulence. The versatility that the proposed method can be used in any imaging algorithms is another advantage. The processing of large number of raw SAR data shows that the algorithm is as robust and practical as phase gradient autofocus and can generate better focused images.
机译:高分辨率机载合成孔径雷达(SAR)系统对飞机与参考航迹的偏离非常敏感。在高分辨率图像中,距离分辨率的提高增加了实现距离像元迁移校正(RCMC)的难度,而更宽的合成孔径会增加运动误差的累积时间,这将影响图像质量。为了在图像处理中实现精确的运动补偿,需要高精度的导航系统。然而,在许多情况下,由于这种系统的精度的限制,运动误差难以正确地补偿,主要导致最终图像的分辨率降低。此外,在大扫描模式下,仅通过使用传统的自动聚焦算法很难补偿与距离相关的相位误差。本文提出了一种基于原始SAR数据的鲁棒运动误差估计方法。为了应用这种估计方法,我们首先估计子孔径中的双相梯度。其次,提出了一种基于曲线拟合的滤波方法,以减少低信噪比(SCR)引起的相位估计误差。最后,我们提出了加权总最小二乘法,以使用滤波后的相位梯度来计算运动误差。由于所提出的算法是非参数算法,因此可以估计高阶运动误差。这对于机载SAR,特别是轻型飞机SAR平台而言非常重要,因为它们在空气湍流中的运动更为复杂。所提出的方法可以在任何成像算法中使用的多功能性是另一个优势。对大量原始SAR数据的处理表明,该算法与相位梯度自动聚焦一样健壮且实用,并且可以生成更好的聚焦图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号