首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >View Generation for Multiview Maximum Disagreement Based Active Learning for Hyperspectral Image Classification
【24h】

View Generation for Multiview Maximum Disagreement Based Active Learning for Hyperspectral Image Classification

机译:基于多视图最大分歧的视图生成基于主动学习的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Active learning (AL) seeks to interactively construct a smaller training data set that is the most informative and useful for the supervised classification task. Based on the multiview Adaptive Maximum Disagreement AL method, this study investigates the principles and capability of several approaches for the view generation for hyperspectral data classification, including clustering, random selection, and uniform subset slicing methods, which are then incorporated with dynamic view updating and feature space bagging strategies. Tests on Airborne Visible/Infrared Imaging Spectrometer and Hyperion hyperspectral data sets show excellent performance as compared with random sampling and the simple version support vector machine margin sampling, a state-of-the-art AL method.
机译:主动学习(AL)试图以交互方式构建一个较小的训练数据集,该数据集对于有监督的分类任务最为有用和有用。本研究基于多视图自适应最大分歧AL方法,研究了用于高光谱数据分类的几种视图生成方法的原理和功能,包括聚类,随机选择和统一子集切片方法,然后将其与动态视图更新和特色太空套袋策略。机载可见/红外成像光谱仪和Hyperion高光谱数据集的测试显示,与随机采样和简单版本的支持向量机余量采样(一种最新的AL方法)相比,它具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号