首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Hybrid Cloud Detection Algorithm to Improve MODIS Sea Surface Temperature Data Quality and Coverage Over the Eastern Gulf of Mexico
【24h】

A Hybrid Cloud Detection Algorithm to Improve MODIS Sea Surface Temperature Data Quality and Coverage Over the Eastern Gulf of Mexico

机译:一种混合云检测算法,可提高MODIS墨西哥东部海湾海面温度数据的质量和覆盖范围

获取原文
获取原文并翻译 | 示例

摘要

Cloud contamination can lead to significant biases in sea surface temperature (SST) as estimated from satellite measurements. The effectiveness of four cloud detection algorithms for the Moderate Resolution Imaging Spectroradiometer (MODIS) in retaining valid SST data and masking cloud-contaminated data was assessed for all 2125 daytime and nighttime images during 2010 over the eastern Gulf of Mexico and including the east coast of Florida. None of the cloud detection algorithms was found to be sufficient to reliably differentiate clouds from valid SST, particularly during anomalously cold events. The strengths and weaknesses of each algorithm were identified, and a new hybrid cloud detection algorithm was developed to maximize valid data retention while excluding cloud-contaminated pixels. The hybrid algorithm was based on a decision tree, which includes a set of rules to use existing algorithms in different ways according to time and location. Comparing with $>10,000$ concurrent in situ SST measurements from buoys, images processed with the hybrid algorithm showed increases in data capture and improved accuracy statistics over most existing algorithms. In particular, while keeping the same accuracy, the hybrid algorithm resulted in nearly 20% more SST retrievals than the most accurate algorithm (Quality SST) currently being used for operational processing. The increases in both data coverage and SST range should improve MODIS data products for more reliable SST retrievals in near real time, thus enhancing the ocean observing capacity to detect anomaly events and study short- and long-term SST changes in coastal environments.
机译:根据卫星测量估计,云污染会导致海面温度(SST)的明显偏差。在2010年期间,对墨西哥湾东部(包括墨西哥东部)的所有2125张白天和黑夜图像评估了中分辨率成像光谱仪(MODIS)的四种云检测算法在保留有效SST数据和掩盖云污染数据方面的有效性。佛罗里达。发现没有一种云检测算法足以可靠地将云与有效的SST区分开,特别是在异常寒冷的事件期间。确定了每种算法的优缺点,并开发了一种新的混合云检测算法,以最大程度地有效保留数据,同时排除受云污染的像素。混合算法基于决策树,决策树包括一组规则,可以根据时间和位置以不同的方式使用现有算法。与从浮标上同时进行SST测量的 $> 10,000 $ 相比,用混合算法处理的图像显示出数据捕获和处理的增加。与大多数现有算法相比,改进了准确性统计信息。特别是,在保持相同精度的同时,混合算法比目前用于运算处理的最精确算法(质量SST)导致的SST检索量增加了近20%。数据覆盖范围和海面温度范围的增加,应改善MODIS数据产品,以近乎实时地更可靠地进行海面温度检索,从而增强海洋观测能力,以探测异常事件并研究沿海环境中短期和长期的海面温度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号