首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission's Single/Dual-Frequency Radar Measurements
【24h】

The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission's Single/Dual-Frequency Radar Measurements

机译:全球降水量测量任务单/双频雷达测量的降水量检索算法的基本性能

获取原文
获取原文并翻译 | 示例

摘要

A precipitation retrieval algorithm is proposed for the dual-frequency precipitation radar (DPR) on the core satellite of the Global Precipitation Measurement mission. The proposed algorithm is called the HB-DFR algorithm, in reference to the combination of Histchfeld-Bordan's attenuation correction method (HB method) and the dual-frequency ratio (DFR) method. The HB-DFR algorithm is tested with a synthetic DPR dataset produced from the standard product of the PR on the Tropical Rainfall Measuring Mission. Precipitation rates estimated by the HB-DFR algorithm at the lowest (near-surface) range bin are evaluated by comparing them with the corresponding values calculated from the drop size distribution of the synthetic dataset. For “light precipitation” (below 1 $hbox{mm h}^{-1}$), precipitation rates are slightly underestimated because of the multiple-solution problem in the DFR method. For “heavy precipitation” (above 10 $hbox{mm h}^{-1}$), the precipitation rates are severely underestimated, and the biases become large when thick liquid phase precipitation occurs. For “medium precipitation” (between 1 and 10 $hbox{mm h}^{-1}$), the estimates are satisfactory. As almost 50$%$ of precipitation falls as medium precipitation in the synthetic dataset, this result validates the usefulness of DPR measurements and the HB-DFR algorithm. Because the HB-DFR algorithm is a forward retrieval algorithm, it has multiple solutions and produces larger errors when applied to lower (farther) range bins. Unlike other dual-frequency algorithms, the HB-DFR algorithm can be easily switched to a single-frequency algorithm at a range bin where a measurement at one of the two fr- quencies is not available.
机译:针对全球降水测量任务核心卫星上的双频降水雷达(DPR),提出了一种降水检索算法。结合Histchfeld-Bordan的衰减校正方法(HB方法)和双频比(DFR)方法,该算法被称为HB-DFR算法。 HB-DFR算法是使用热带雨量测量任务中PR标准产品产生的合成DPR数据集进行测试的。通过将HB-DFR算法估计的最低(近表面)范围bin处的降水率与从合成数据集的液滴大小分布计算出的相应值进行比较,可以评估它们。对于“轻度降水”(低于1 $ hbox {mm h} ^ {-1} $),由于DFR方法中的多溶液问题,降水率被低估了。对于“强降水”(高于10 $ hbox {mm h} ^ {-1} $),降水速率被严重低估,当发生厚液相沉淀时,偏差会变大。对于“中等降水量”(1至10美元hbox {mm h} ^ {-1} $之间),估计值令人满意。由于合成数据集中几乎50 %%的降水属于中等降水,因此该结果验证了DPR测量和HB-DFR算法的有效性。因为HB-DFR算法是一种前向检索算法,所以它具有多种解决方案,并且应用于较低(更远)范围的bin时会产生较大的误差。与其他双频算法不同,HB-DFR算法可以在不提供两个频率之一的测量值的范围仓中轻松切换为单频算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号