首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Support Vector Regression-Based Downscaling for Intercalibration of Multiresolution Satellite Images
【24h】

Support Vector Regression-Based Downscaling for Intercalibration of Multiresolution Satellite Images

机译:基于支持向量回归的降尺度用于多分辨率卫星图像的互校准

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a nonlinear super-resolution method for converting low spatial resolution data into high spatial resolution data to calibrate multiple sensors with a moderate spatial resolution difference, e.g., the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (30 m) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) visible and near infrared (NIR) sensors (15 m). A preliminary linear calibration was first applied to reduce the radiometric difference. The remaining nonlinear part of the radiometric and spatial resolution differences were then calibrated by downscaling the ETM+ data to ASTER data using a support vector regression (SVR)-based super-resolution method. Experiments were conducted on two subsets (representing rural and urban areas) of the ETM+ and ASTER scenes located in the central United States on top of atmospheric reflectance observed on August 13, 2001. It was found that the radiometric difference between the two sensors caused by their spectral band difference could be largely reduced by a linear transfer equation, and the reduction could be more than 60% for the green and NIR bands. The SVR-calibrated data showed improvement over the linearly calibrated data in terms of quantitative measures and visual analysis. Furthermore, SVR calibration improved the spatial resolution of the ETM+ data toward resembling the 15-m cell size of the ASTER pixel. Consequently, the proposed method has the potential to extend an ASTER scene's swath width to match that of an ETM+ scene.
机译:本文介绍了一种非线性超分辨率方法,用于将低空间分辨率数据转换为高空间分辨率数据,以校准具有中等空间分辨率差异的多个传感器,例如,Landsat 7增强型专题测绘仪增强版(ETM +)(30 m)和Advanced Spaceborne热发射和反射辐射计(ASTER)可见和近红外(NIR)传感器(15 m)。首先进行了初步的线性校准,以减小辐射差异。然后,使用基于支持向量回归(SVR)的超分辨率方法,通过将ETM +数据缩减为ASTER数据,来校准辐射度和空间分辨率差异的其余非线性部分。根据2001年8月13日观测到的大气反射率,对位于美国中部的ETM +和ASTER场景的两个子集(代表农村和城市地区)进行了实验。发现这两个传感器之间的辐射度差异是由它们的光谱带差异可以通过线性传递方程大大减小,并且对于绿色和NIR波段,减小幅度可以超过60%。在定量测量和视觉分析方面,SVR校准的数据显示出比线性校准的数据更好的性能。此外,SVR校准提高了ETM +数据的空间分辨率,使其类似于ASTER像素的15米单元尺寸。因此,所提出的方法具有扩展ASTER场景的条带宽度以匹配ETM +场景的宽度的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号