首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Change Detection of Multilook Polarimetric SAR Images Using Heterogeneous Clutter Models
【24h】

Change Detection of Multilook Polarimetric SAR Images Using Heterogeneous Clutter Models

机译:基于异构杂波模型的多视极化SAR图像变化检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel unsupervised change detection scheme for multilook polarimetric synthetic aperture radar (PolSAR) images using heterogeneous clutter models. First, a multilook product model is introduced to describe the heterogeneous clutter for multilook PolSAR data, and a corresponding covariance matrix estimation method is derived. Based on this model, a new similarity measure is proposed to quantify the degree of evolution between the statistical characteristics of multitemporal fully PolSAR images. Compared with the classical similarity measure of Wishart distribution, both the structure of the covariance matrix and the power information of PolSAR clutter are considered in the proposed similarity measure. A Kittler and Illingworth (K&I) minimum-error threshold segmentation method is applied to extract the changed areas. Both the simulated PolSAR data set and two three-look Radarsat-2 fully polarimetric images of Suzhou, China, acquired on April 9, 2009 and June 15, 2010, are used for our experiment. The results demonstrate that the proposed change detection method can give a much higher detection rate and a lower false alarm rate than the method using the Wishart similarity measure.
机译:在本文中,我们提出了一种使用异构杂波模型的多视极化合成孔径雷达(PolSAR)图像的新型无监督变化检测方案。首先,引入多视产品模型来描述多视PolSAR数据的异质杂波,并推导相应的协方差矩阵估计方法。基于该模型,提出了一种新的相似性度量来量化多时间全PolSAR图像的统计特征之间的演化程度。与经典的Wishart分布相似度相比,本文提出的相似度度量考虑了协方差矩阵的结构和PolSAR杂波的功率信息。采用Kittler and Illingworth(K&I)最小误差阈值分割方法来提取变化区域。我们的实验使用了模拟的PolSAR数据集和2009年4月9日和2010年6月15日采集的中国苏州的两张三视场Radarsat-2全极化图像。结果表明,与使用Wishart相似性度量的方法相比,所提出的变化检测方法可以提供更高的检测率和更低的误报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号