首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >High-Fidelity Component Substitution Pansharpening by the Fitting of Substitution Data
【24h】

High-Fidelity Component Substitution Pansharpening by the Fitting of Substitution Data

机译:通过置换数据拟合实现高保真成分置换

获取原文
获取原文并翻译 | 示例

摘要

Due to the difference of “mean information” between substitution component and substituted component, spectral distortion often occurs in component substitution (CS) pansharpening. In this paper, a data fitting scheme is adopted to improve spectral quality in image fusion based on well-established CS approach. A generalized CS framework that is capable of modeling any CS image fusion method is also presented. In this framework, instead of injecting detail information of panchromatic (Pan) image into substituted component, the data fitting strategy is designed to adjust the mean information of Pan image in the construction of substitution component. The data fitting scheme involves two matrix subtractions and one matrix convolution. It is fast in implementation and is effective to avoid the spectral distortion problem. Experimental results on a large number of Pan and multispectral images show that the improved CS methods have good performance on the spatial and spectral fidelity. Moreover, experiments carried out on large-size images also show an excellent running time performance of the proposed methods.
机译:由于替代组分和被替代组分之间“均值信息”的差异,光谱失真经常发生在组分替代(CS)锐化中。本文基于成熟的CS方法,采用数据拟合方案来提高图像融合中的光谱质量。还提出了能够建模任何CS图像融合方法的通用CS框架。在此框架下,设计了一种数据拟合策略,以在替换组件的构造中调整全景图像的均值信息,而不是将全色(Pan)图像的详细信息注入到替换组件中。数据拟合方案涉及两个矩阵减法和一个矩阵卷积。它实现速度快,并且可以有效避免频谱失真问题。在大量的平移和多光谱图像上的实验结果表明,改进的CS方法在空间和光谱保真度方面具有良好的性能。此外,在大尺寸图像上进行的实验也显示了所提出方法的出色的运行时间性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号