首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Hybrid Object-Oriented Conditional Random Field Classification Framework for High Spatial Resolution Remote Sensing Imagery
【24h】

A Hybrid Object-Oriented Conditional Random Field Classification Framework for High Spatial Resolution Remote Sensing Imagery

机译:高分辨率遥感影像的面向对象混合条件随机场分类框架

获取原文
获取原文并翻译 | 示例

摘要

High spatial resolution (HSR) remote sensing imagery provides abundant geometric and detailed information, which is important for classification. In order to make full use of the spatial contextual information, object-oriented classification and pairwise conditional random fields (CRFs) are widely used. However, the segmentation scale choice is a challenging problem in object-oriented classification, and the classification result of pairwise CRF always has an oversmooth appearance. In this paper, a hybrid object-oriented CRF classification framework for HSR imagery, namely, CRF $+$ OO, is proposed to address these problems by integrating object-oriented classification and CRF classification. In CRF $+$ OO, a probabilistic pixel classification is first performed, and then, the classification results of two CRF models with different potential functions are used to obtain the segmentation map by a connected-component labeling algorithm. As a result, an object-level classification fusion scheme can be used, which integrates the object-oriented classifications using a majority voting strategy at the object level to obtain the final classification result. The experimental results using two multispectral HSR images (QuickBird and IKONOS) and a hyperspectral HSR image (HYDICE) demonstrate that the proposed classification framework has a competitive quantitative and qualitative performance for HSR image classification when compared with other state-of-the-art classification algorithms.
机译:高空间分辨率(HSR)遥感影像提供了丰富的几何和详细信息,这对于分类很重要。为了充分利用空间上下文信息,广泛使用了面向对象的分类和成对条件随机场(CRF)。然而,分割尺度的选择在面向对象的分类中是一个具有挑战性的问题,而成对CRF的分类结果总是显得过分平滑。本文提出了一种用于HSR图像的面向对象的混合CRF分类框架,即CRF $ + $ OO,通过集成面向对象的分类和CRF分类来解决这些问题。在CRF $ + $ OO中,首先执行概率像素分类,然后使用两个具有不同潜在功能的CRF模型的分类结果,通过连接组件标记算法获得分割图。结果,可以使用对象级分类融合方案,该方案使用对象级的多数投票策略集成面向对象的分类,以获得最终的分类结果。使用两个多光谱HSR图像(QuickBird和IKONOS)和一个高光谱HSR图像(HYDICE)进行的实验结果表明,与其他最新分类相比,该分类框架对HSR图像分类具有竞争性的定量和定性性能算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号