首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Detail-Preserving Smoothing Classifier Based on Conditional Random Fields for High Spatial Resolution Remote Sensing Imagery
【24h】

Detail-Preserving Smoothing Classifier Based on Conditional Random Fields for High Spatial Resolution Remote Sensing Imagery

机译:基于条件随机场的高细节分辨率遥感影像保细节平滑分类器

获取原文
获取原文并翻译 | 示例

摘要

In the field of high spatial resolution (HSR) remote sensing imagery classification, object-oriented classification and conditional random field (CRF) approaches are widely used due to their ability to incorporate the spatial contextual information. However, the selection of the optimal segmentation scale in object-oriented classification is not an easy task, and some pairwise CRF models always show an oversmooth performance. In this paper, a detail-preserving smoothing classifier based on conditional random fields (DPSCRF) for HSR imagery is proposed to apply the object-oriented strategy in the CRF classification framework, thus integrating the merits of both approaches to consider the spatial contextual information and preserve the detail information in the classification. The DPSCRF model defines suitable potential functions based on the CRF model for HSR image classification, which comprise the spatial smoothing and local class label cost terms. Both terms favor spatial smoothing in a local neighborhood to consider the spatial information. In addition, the local class label cost also considers the different label information of neighboring pixels at each iterative step in the classification to preserve the detail information. In order to deal with the spectral variability of HSR imagery, a segmentation prior is used by the object-oriented processing strategy. This models the probability of each pixel based on the segmentation regions obtained by the connected-component labeling algorithm. The experimental results with three HSR images demonstrate that the proposed classification algorithm shows a competitive performance in both the quantitative and the qualitative evaluation when compared to the other state-of-the-art classification algorithms.
机译:在高空间分辨率(HSR)遥感影像分类领域,面向对象分类和条件随机场(CRF)方法由于能够合并空间上下文信息而被广泛使用。然而,在面向对象分类中选择最佳分割尺度并不是一件容易的事,并且某些成对的CRF模型总是显示出过分平滑的性能。本文提出了一种基于条件随机场(DPSCRF)的HSR图像保留细节平滑分类器,以将面向对象的策略应用于CRF分类框架中,从而综合了两种方法的优点,可以考虑空间上下文信息和在分类中保留详细信息。 DPSCRF模型基于CRF模型为HSR图像分类定义合适的潜在函数,其中包括空间平滑和局部类别标签成本项。这两个术语都支持在局部邻域中进行空间平滑以考虑空间信息。另外,局部分类标签成本还考虑了分类中每个迭代步骤的相邻像素的不同标签信息,以保存细节信息。为了处理高铁图像的光谱可变性,面向对象的处理策略使用了分割先验。这基于通过连接组件标记算法获得的分割区域对每个像素的概率进行建模。三个HSR图像的实验结果表明,与其他最新的分类算法相比,所提出的分类算法在定量和定性评估方面均表现出竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号