首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Three-Dimensional Reconstruction of Multiplatform Stereo Data With Variance Component Estimation
【24h】

Three-Dimensional Reconstruction of Multiplatform Stereo Data With Variance Component Estimation

机译:方差分量估计的多平台立体数据的三维重构

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address a problem of 3-D reconstruction with generalized stereo data from multiple platforms of remote sensing. Nowadays, rational function model (RFM)-based 3-D reconstruction with stereo images obtained from a single platform of remote sensing like a satellite or an airborne platform has been widely investigated, but there are little attentions to be paid to the problem of 3-D reconstruction with stereo images from multiple platforms in the existing literature. In order to make full use of the generalized stereo images from different platforms with different rigorous sensor models for 3-D reconstruction, we need to form the least squares estimation model of the corresponding RFM-based forward-intersection task after collecting observations from different platforms. However, resolutions of the stereo images from different platforms are greatly different so that the observations in the corresponding least squares problem are mathematically seriously unbalanced. To solve this problem for achieving precise reconstruction, we first model how the spatial resolution of the observation images of different platforms changes pixel by pixel and then embed the variance-component-estimation technique into the RFM-based 3-D reconstruction procedure to adaptively adjust weights for different observations. Experiments are conducted on simulated and real data sets. Experimental results show that the proposed algorithm can efficiently fulfill the 3-D reconstruction task for multiplatform stereo images with noticeable improvement over the classical RFM-based 3-D reconstruction method in terms of precision.
机译:在本文中,我们解决了使用来自多个遥感平台的广义立体数据进行3D重建的问题。如今,人们已经广泛研究了基于有理函数模型(RFM)的3-D重建,该重建具有从单个遥感平台(如卫星或机载平台)获得的立体图像,但很少关注3的问题。 -D重建具有来自现有文献中多个平台的立体图像。为了充分利用来自具有不同严格传感器模型的不同平台的广义立体图像进行3-D重建,我们需要在收集来自不同平台的观测值之后,形成对应的基于RFM的正交任务的最小二乘估计模型。 。但是,来自不同平台的立体图像的分辨率差异很大,因此相应的最小二乘问题在数学上严重失衡。为解决此问题,实现精确重建,我们首先对不同平台的观测图像的空间分辨率如何逐像素建模,然后将方差分量估计技术嵌入基于RFM的3-D重建过程中进行自适应调整不同观察值的权重。实验是在模拟和真实数据集上进行的。实验结果表明,该算法可以有效地完成多平台立体图像的3D重建任务,在精度上比传统的基于RFM的3D重建方法有明显改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号