首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery
【24h】

Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery

机译:基于多特征融合概率主题模型的高空间分辨率遥感影像场景分类

获取原文
获取原文并翻译 | 示例

摘要

Scene classification has been proved to be an effective method for high spatial resolution (HSR) remote sensing image semantic interpretation. The probabilistic topic model (PTM) has been successfully applied to natural scenes by utilizing a single feature (e.g., the spectral feature); however, it is inadequate for HSR images due to the complex structure of the land-cover classes. Although several studies have investigated techniques that combine multiple features, the different features are usually quantized after simple concatenation (CAT-PTM). Unfortunately, due to the inadequate fusion capacity of -means clustering, the words of the visual dictionary obtained by CAT-PTM are highly correlated. In this paper, a semantic allocation level (SAL) multifeature fusion strategy based on PTM, namely, SAL-PTM (SAL-pLSA and SAL-LDA) for HSR imagery is proposed. In SAL-PTM: 1) the complementary spectral, texture, and scale-invariant-feature-transform features are effectively combined; 2) the three features are extracted and quantized separately by -means clustering, which can provide appropriate low-level feature descriptions for the semantic representations; and 3)the latent semantic allocations of the three features are captured separately by PTM, which follows the core idea of PTM-based scene classification. The probabilistic latent semantic analysis (pLSA) and latent Dirichlet allocation (LDA) models were compared to test the effect of different PTMs for HSR imagery. A U.S. Geological Survey data set and the UC Merced data set were utilized to evaluate SAL-PTM in comparison with the conventional methods. The experimental results confirmed that SAL-PTM is superior to the single-feature methods and CAT-PTM in the scene classification of HSR imagery.
机译:场景分类已被证明是一种用于高空间分辨率(HSR)遥感图像语义解释的有效方法。概率主题模型(PTM)已通过利用单个特征(例如,光谱特征)成功应用于自然场景;但是,由于土地覆盖类别的结构复杂,因此对于高铁图像来说是不够的。尽管一些研究已经研究了将多个特征组合在一起的技术,但是通常在简单级联(CAT-PTM)之后对不同的特征进行量化。不幸的是,由于-means聚类的融合能力不足,因此通过CAT-PTM获得的视觉词典中的单词高度相关。本文提出了一种基于PTM的语义分配级(SAL)多特征融合策略,即用于高铁图像的SAL-PTM(SAL-pLSA和SAL-LDA)。在SAL-PTM中:1)有效地组合了互补的光谱,纹理和尺度不变特征变换特征; 2)通过-means聚类分别提取和量化这三个特征,可以为语义表示提供适当的低层特征描述; 3)PTM分别捕获了这三个特征的潜在语义分配,这遵循了基于PTM的场景分类的核心思想。比较了概率潜在语义分析(pLSA)和潜在Dirichlet分配(LDA)模型,以测试不同PTM对HSR图像的影响。与传统方法相比,美国地质调查局的数据集和UC Merced数据集被用于评估SAL-PTM。实验结果证实,在高铁图像的场景分类中,SAL-PTM优于单特征方法和CAT-PTM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号