首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Superpixel-Based Graphical Model for Remote Sensing Image Mapping
【24h】

Superpixel-Based Graphical Model for Remote Sensing Image Mapping

机译:基于超像素的遥感影像图形模型

获取原文
获取原文并翻译 | 示例

摘要

Object-oriented remote sensing image classification is becoming more and more popular because it can integrate spatial information from neighboring regions of different shapes and sizes into the classification procedure to improve the mapping accuracy. However, object identification itself is difficult and challenging. Superpixels, which are groups of spatially connected similar pixels, have the scale between the pixel level and the object level and can be generated from oversegmentation. In this paper, we establish a new classification framework using a superpixel-based graphical model. Superpixels instead of pixels are applied as the basic unit to the graphical model to capture the contextual information and the spatial dependence between the superpixels. The advantage of this treatment is that it makes the classification less sensitive to noise and segmentation scale. The contribution of this paper is the application of a graphical model to remote sensing image semantic segmentation. It is threefold. 1) Gradient fusion is applied to multispectral images before the watershed segmentation algorithm is used for superpixel generation. 2) A probabilistic fusion method is designed to derive node potential in the superpixel-based graphical model to address the problem of insufficient training samples at the superpixel level. 3) A boundary penalty between the superpixels is introduced in the edge potential evaluation. Experiments on three real data sets were conducted. The results show that the proposed method performs better than the related state-of-the-art methods tested.
机译:面向对象的遥感图像分类越来越受欢迎,因为它可以将来自不同形状和大小的相邻区域的空间信息整合到分类过程中,以提高映射精度。然而,物体识别本身是困难且具有挑战性的。作为在空间上连接的相似像素的组的超像素,在像素级别和对象级别之间具有比例,并且可以通过过度分割来生成。在本文中,我们使用基于超像素的图形模型建立了一个新的分类框架。将超像素而不是像素作为基本单元应用于图形模型,以捕获上下文信息和超像素之间的空间依赖性。这种处理的优点在于,它使分类对噪声和分割尺度的敏感性降低。本文的贡献是将图形模型应用于遥感图像语义分割。这是三倍。 1)在将分水岭分割算法用于超像素生成之前,将梯度融合应用于多光谱图像。 2)设计了一种概率融合方法,以得出基于超像素的图形模型中的节点电势,以解决超像素级别训练样本不足的问题。 3)在边缘电势评估中引入了超像素之间的边界惩罚。进行了三个真实数据集的实验。结果表明,该方法的性能优于相关的最新测试方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号