首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification
【24h】

Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification

机译:基于区域核的支持向量机用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a region kernel to measure the region-to-region distance similarity for hyperspectral image (HSI) classification. The region kernel is designed to be a linear combination of multiscale box kernels, which can handle the HSI regions with arbitrary shape and size. Integrating labeled pixels and labeled regions, we further propose a region-kernel-based support vector machine (RKSVM) classification framework. In RKSVM, three different composite kernels are constructed to describe the joint spatial–spectral similarity. Particularly, we design a desirable stack composite kernel that consists of the point-based kernel, the region-based kernel, and the cross point-to-region kernel. The effectiveness of the proposed RKSVM is validated on three benchmark hyperspectral data sets. Experimental results show the superiority of our region kernel method over the classical point kernel methods.
机译:本文提出了一种区域核来测量高光谱图像(HSI)分类的区域间距离相似性。区域内核被设计为多尺度盒形内核的线性组合,可以处理任意形状和大小的HSI区域。集成标记像素和标记区域,我们进一步提出了一种基于区域核的支持向量机(RKSVM)分类框架。在RKSVM中,构造了三种不同的复合核来描述联合空间光谱相似度。特别是,我们设计了一种理想的堆栈复合内核,它由基于点的内核,基于区域的内核和交叉的点对区域内核组成。在三个基准高光谱数据集上验证了所提出的RKSVM的有效性。实验结果表明,我们的区域核方法优于经典的点核方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号