首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Probabilistic Fusion of Pixel-Level and Superpixel-Level Hyperspectral Image Classification
【24h】

Probabilistic Fusion of Pixel-Level and Superpixel-Level Hyperspectral Image Classification

机译:像素级和超像素级高光谱图像分类的概率融合

获取原文
获取原文并翻译 | 示例

摘要

A novel hyperspectral image (HSI) classification method by the probabilistic fusion of pixel-level and superpixel-level classifiers is proposed. Generally, pixel-level classifiers based on spectral information only may generate “salt and pepper” result in the classification map since spatial correlation is not considered. By incorporating spatial information in homogeneous regions, the superpixel-level classifiers can effectively eliminate the noisy appearance. However, the classification accuracy will be deteriorated if undersegmentation cannot be fully avoided in superpixel-based approaches. Therefore, it is proposed to adaptively combine both the pixel-level and superpixel-level classifiers, to improve the classification performance in both homogenous and structural areas. In the proposed method, a support vector machine classifier is first applied to estimate the pixel-level class probabilities. Then, superpixel-level class probabilities are estimated based on a joint sparse representation. Finally, the two levels of class probabilities are adaptively combined in a maximum a posteriori estimation model, and the classification map is obtained by solving the maximum optimization problem. Experimental results on real HSI images demonstrate the superiority of the proposed method over several well-known classification approaches in terms of classification accuracy.
机译:提出了一种新的基于像素级和超像素级分类器概率融合的高光谱图像分类方法。通常,由于不考虑空间相关性,仅基于光谱信息的像素级分类器可能会在分类图中生成“盐和胡椒”结果。通过在同质区域中合并空间信息,超像素级分类器可以有效消除噪点。但是,如果在基于超像素的方法中无法完全避免分割不足,则分类精度将会降低。因此,提出了自适应地组合像素级和超像素级分类器,以提高同质和结构区域中的分类性能。在提出的方法中,首先应用支持向量机分类器来估计像素级分类概率。然后,基于联合稀疏表示来估计超像素级别的类概率。最后,在最大后验估计模型中将两个级别的类别概率自适应地组合在一起,并通过解决最大优化问题来获得分类图。在真实HSI图像上的实验结果证明了该方法在分类准确度方面优于几种众所周知的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号