首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images
【24h】

Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

机译:学习旋转不变卷积神经网络用于VHR光学遥感图像中的目标检测

获取原文
获取原文并翻译 | 示例

摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
机译:高分辨率光学遥感图像中的目标检测是遥感图像分析面临的基本问题。由于功能强大的特征表示技术的进步,基于机器学习的对象检测越来越受到关注。尽管存在许多特征表示,但其中大多数是手工制作或基于浅学习的特征。随着物体检测任务变得更具挑战性,它们的描述能力变得有限,甚至变得贫困。最近,深度学习算法,尤其是卷积神经网络(CNN),已显示出它们在计算机视觉中更强大的特征表示能力。尽管在自然场景图像中取得了进步,但是直接将CNN功能用于光学遥感图像中的对象检测还是有问题的,因为很难有效地处理对象旋转变化的问题。为了解决这个问题,本文提出了一种新颖有效的方法来学习旋转不变的CNN(RICNN)模型,以提高目标检测的性能,该方法是在引入和学习新的旋转不变层的基础上实现的。现有的CNN架构。但是,与仅优化多项式逻辑回归目标的传统CNN模型训练不同,我们的RICNN模型是通过施加正则化约束条件来优化新的目标函数来进行训练的,该函数明确规定了旋转前后训练样本的特征表示彼此靠近映射,从而实现旋转不变性。为了便于训练,我们首先训练旋转不变层,然后针对特定领域微调整个RICNN网络,以进一步提高性能。对可公开获得的十类物体检测数据集的综合评估证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号