首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multiple Kernel Learning Based on Discriminative Kernel Clustering for Hyperspectral Band Selection
【24h】

Multiple Kernel Learning Based on Discriminative Kernel Clustering for Hyperspectral Band Selection

机译:基于判别核聚类的高光谱波段选择多核学习

获取原文
获取原文并翻译 | 示例

摘要

In hyperspectral images, band selection plays a crucial role for land-cover classification. Multiple kernel learning (MKL) is a popular feature selection method by selecting the relevant features and classifying the images simultaneously. Unfortunately, a large number of spectral bands in hyperspectral images result in excessive kernels, which limit the application of MKL. To address this problem, a novel MKL method based on discriminative kernel clustering (DKC) is proposed. In the proposed method, a discriminative kernel alignment (KA) (DKA) is defined. Traditional KA measures kernel similarity independently of the current classification task. Compared with KA, DKA measures the similarity of discriminative information by introducing the comparison of intraclass and interclass similarities. It can evaluate both kernel redundancy and kernel synergy for classification. Then, DKA-based affinity-propagation clustering is devised to reduce the kernel scale and retain the kernels having high discrimination and low redundancy for classification. Additionally, an analysis of necessity for DKC in hyperspectral band selection is provided by empirical Rademacher complexity. Experimental results on several hyperspectral images demonstrate the effectiveness of the proposed band selection method in terms of classification performance and computation efficiency.
机译:在高光谱图像中,波段选择对于土地覆盖分类起着至关重要的作用。通过选择相关特征并同时对图像进行分类,多核学习(MKL)是一种流行的特征选择方法。不幸的是,高光谱图像中的大量光谱带导致过多的核,这限制了MKL的应用。为了解决这个问题,提出了一种基于判别式内核聚类(DKC)的新颖的MKL方法。在提出的方法中,定义了区分核对齐(KA)(DKA)。传统的KA独立于当前的分类任务来测量内核相似度。与KA相比,DKA通过引入类内和类间相似度的比较来度量判别信息的相似度。它可以评估内核冗余和内核协同作用以进行分类。然后,设计了基于DKA的亲和度传播聚类算法,以减少内核规模,并保留具有高区分度和低冗余度的内核进行分类。此外,经验Rademacher复杂度提供了在高光谱波段选择中DKC的必要性分析。在几个高光谱图像上的实验结果证明了该分类方法在分类性能和计算效率方面的有效性。

著录项

  • 来源
    《IEEE Transactions on Geoscience and Remote Sensing》 |2016年第11期|6516-6530|共15页
  • 作者单位

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kernel; Hyperspectral imaging; Support vector machines; Training; Redundancy; Complexity theory;

    机译:核;高光谱成像;支持向量机;训练;冗余;复杂性理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号