首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multiscale and Multidirectional Multilooking for SAR Image Enhancement
【24h】

Multiscale and Multidirectional Multilooking for SAR Image Enhancement

机译:多尺度和多方向多视域SAR图像增强

获取原文
获取原文并翻译 | 示例

摘要

With the steadily increasing spatial resolution of synthetic aperture radar images, the need for a consistent but locally adaptive image enhancement rises considerably. Numerous studies already showed that adaptive multilooking, able to adjust the degree of smoothing locally to the size of the targets, is superior to uniform multilooking. This study introduces a novel approach of multiscale and multidirectional multilooking based on intensity images exclusively but applicable to an arbitrary number of image layers. A set of 2-D circular and elliptical filter kernels in different scales and orientations (named Schmittlets) is derived from hyperbolic functions. The original intensity image is transformed into the Schmittlet coefficient domain where each coefficient measures the existence of Schmittlet-like structures in the image. By estimating their significance via the perturbation-based noise model, the best-fitting Schmittlets are selected for image reconstruction. On the one hand, the index image indicating the locally best-fitting Schmittlets is utilized to consistently enhance further image layers, e.g., multipolarized, multitemporal, or multifrequency layers, and on the other hand, it provides an optimal description of spatial patterns valuable for further image analysis. The final validation proves the advantages of the Schmittlets over six contemporary speckle reduction techniques in six different categories (preservation of the mean intensity, equivalent number of looks, and preservation of edges and local curvature both in strength and in direction) by the help of four test sites on three resolution levels. The additional value of the Schmittlet index layer for automated image interpretation, although obvious, still is subject to further studies.
机译:随着合成孔径雷达图像空间分辨率的不断提高,对一致但局部自适应图像增强的需求大大增加。大量研究已经表明,自适应多视能够将局部平滑程度调整为目标大小,优于统一多视。本研究介绍了一种基于强度图像的多尺度多方向多视的新颖方法,该方法专门适用于任意数量的图像层。从双曲函数派生出一组不同比例和方向的二维圆形和椭圆形滤波器核(称为Schmittlet)。原始强度图像被转换到Schmittlet系数域,其中每个系数都测量图像中类似Schmittlet的结构的存在。通过基于扰动的噪声模型估计它们的重要性,选择最合适的Schmittlet进行图像重建。一方面,指示局部最适合的Schmittlet的索引图像被用来持续增强其他图像层,例如多极化,多时间或多频层,另一方面,它提供了对空间模式有价值的最佳描述进一步的图像分析。最终的验证通过四个方面的证明证明了Schmittlets相对于六种不同类别的六种当代斑点减少技术(保持平均强度,等效外观数量以及在强度和方向上保留边缘和局部曲率)的优势。在三个分辨率级别上测试站点。 Schmittlet索引层在自动图像解释方面的附加价值虽然显而易见,但仍需进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号