首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Toward a Generalizable Image Representation for Large-Scale Change Detection: Application to Generic Damage Analysis
【24h】

Toward a Generalizable Image Representation for Large-Scale Change Detection: Application to Generic Damage Analysis

机译:面向大规模变化检测的通用图像表示:在通用损伤分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Each year, multiple catastrophic events impact vulnerable populations around the planet. Assessing the damage caused by these events in a timely and accurate manner is crucial for efficient execution of relief efforts to help the victims of these calamities. Given the low accessibility of the damaged areas, high-resolution optical satellite imagery has emerged as a valuable source of information to quickly asses the extent of damage by manually analyzing the pre- and postevent imagery of the region. To make this analysis more efficient, multiple learning techniques using a variety of image representations have been proposed. However, most of these representations are prone to variabilities in capture angle, sun location, and seasonal variations. To evaluate these representations in the context of damage detection, we present a benchmark of 86 pre- and postevent image pairs with respective reference data derived from United Nation Operational Satellite Applications Programme (UNOSAT) assessment maps, spanning a total area of 4665 km from 11 different locations around the world. The technical contribution of our work is a novel image representation based on shape distributions of image patches encoded with locality-constrained linear coding. We empirically demonstrate that our proposed representation provides an improvement of at least 5%, in equal error rate, over alternate approaches. Finally, we present a thorough robustness analysis of the considered representational schemes, with respect to capture-angle variabilities and multiple sensor combinations.
机译:每年,多起灾难性事件都会影响地球上的脆弱人群。及时有效地评估这些事件造成的损害,对于有效执行救济行动以帮助这些灾难的受害者至关重要。鉴于受损区域的可及性较低,高分辨率光学卫星图像已成为一种有价值的信息来源,可以通过手动分析该区域的事前和事后图像来快速评估损害程度。为了使这种分析更加有效,已经提出了使用各种图像表示的多种学习技术。但是,这些表示中的大多数都易于捕获角度,太阳位置和季节变化的变化。为了在损坏检测的背景下评估这些表示形式,我们提出了一个基准,包括86个事件前和事件后图像对,以及从联合国作战卫星应用程序(UNOSAT)评估图获得的各自参考数据,涵盖了11个4665 km的总面积世界各地的不同位置。我们工作的技术贡献是基于基于局部约束线性编码编码的图像块的形状分布的新颖图像表示。我们凭经验证明,我们提出的表示方法与其他方法相比,在平均错误率方面至少提高了5%。最后,我们针对捕获角度的可变性和多个传感器组合,对所考虑的代表性方案进行了全面的鲁棒性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号