首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning
【24h】

Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning

机译:弱监督学习对高分辨率卫星图像的语义标注

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on tackling the problem of automatic semantic annotation of high resolution (HR) optical satellite images, which aims to assign one or several predefined semantic concepts to an image according to its content. The main challenges arise from the difficulty of characterizing complex and ambiguous contents of the satellite images and the high human labor cost caused by preparing a large amount of training examples with high-quality pixel-level labels in fully supervised annotation methods. To address these challenges, we propose a unified annotation framework by combining discriminative high-level feature learning and weakly supervised feature transferring. Specifically, an efficient stacked discriminative sparse autoencoder (SDSAE) is first proposed to learn high-level features on an auxiliary satellite image data set for the land-use classification task. Inspired by the motivation that the encoder of the prelearned SDSAE can be regarded as a generic high-level feature extractor for HR optical satellite images, we then transfer the learned high-level features to semantic annotation. To compensate the difference between the auxiliary data set and the annotation data set, the transferred high-level features are further fine-tuned in a weakly supervised scheme by using the tile-level annotated training data. Finally, the fine-tuning process is formulated as an ultimate optimization problem, which can be solved efficiently with our proposed alternate iterative optimization method. Comprehensive experiments on a publicly available land-use classification data set and an annotation data set demonstrate the superiority of our SDSAE-based high-level feature learning method and the effectiveness of our weakly supervised semantic annotation framework compared with state-of-the-art fully supervised annotation methods.
机译:在本文中,我们专注于解决高分辨率(HR)光学卫星图像的自动语义注释问题,该问题旨在根据图像的内容为图像分配一个或几个预定义的语义概念。主要挑战来自难以表征复杂复杂的卫星图像内容,以及由于在完全监督的注释方法中准备了大量带有高质量像素级标签的训练示例而导致的高人工成本。为了解决这些挑战,我们通过结合区分性的高级特征学习和弱监督的特征转移提出了一个统一的注释框架。具体而言,首先提出了一种有效的堆叠式判别式稀疏自动编码器(SDSAE),以学习用于土地利用分类任务的辅助卫星图像数据集上的高级特征。受到预学习SDSAE编码器可以被视为HR光学卫星图像的通用高级特征提取器的启发,然后将学习到的高级特征转换为语义标注。为了补偿辅助数据集和注释数据集之间的差异,通过使用图块级别的带注释的训练数据,在弱监督方案中进一步微调了传输的高级特征。最后,将微调过程公式化为最终的优化问题,可以通过我们提出的替代迭代优化方法有效地解决该问题。与公开可用的土地利用分类数据集和注释数据集进行的综合实验表明,与现有技术相比,基于SDSAE的高级特征学习方法的优越性以及弱监督的语义注释框架的有效性完全监督的注释方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号