首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Histogram-Based Attribute Profiles for Classification of Very High Resolution Remote Sensing Images
【24h】

Histogram-Based Attribute Profiles for Classification of Very High Resolution Remote Sensing Images

机译:基于直方图的属性配置文件用于超高分辨率遥感影像的分类

获取原文
获取原文并翻译 | 示例

摘要

Morphological attribute profiles (APs) obtained by the sequential application of morphological attribute filters to images have been found very effective in remote sensing (RS) to characterize spatial properties of objects in a scene. However, a direct use of the APs can be insufficient to provide a complete characterization of spatial information when complex texture is present in the considered images. To overcome this problem, in this paper, we present the novel histogram-based morphological APs (HAPs). The HAPs model the marginal local distribution of attribute filter responses to better characterize the texture information, and they are obtained based on a three-step algorithm. In the first step, the standard APs are constructed by sequentially applying attribute filters to the considered image. In the second step, a local histogram is calculated for each sample of each image in the APs. Then, in the final step, the local histograms of the same pixel locations in the APs are stacked, resulting in a texture descriptor whose components represent local distributions of the filter responses for the related pattern. Finally, the very-high-dimensional HAPs are classified by a support vector machine (SVM) classifier with histogram intersection kernel. Experimental results obtained by considering two very high resolution panchromatic images show the effectiveness of the proposed HAPs, which sharply improve the accuracy of the SVM classifier with respect to standard AP-based methods.
机译:已经发现通过将形态属性过滤器顺序应用于图像而获得的形态属性配置文件(AP)在遥感(RS)来表征场景中对象的空间特性方面非常有效。但是,当所考虑的图像中存在复杂纹理时,直接使用AP可能不足以提供空间信息的完整表征。为了克服这个问题,在本文中,我们提出了新颖的基于直方图的形态学AP(HAP)。 HAP对属性过滤器响应的边缘局部分布进行建模,以更好地表征纹理信息,并基于三步算法获得它们。第一步,通过将属性过滤器顺序应用到所考虑的图像来构造标准AP。在第二步中,为AP中每个图像的每个样本计算局部直方图。然后,在最后一步中,将AP中相同像素位置的局部直方图堆叠起来,生成纹理描述符,其成分表示相关图案的滤波器响应的局部分布。最后,超高维HAP由支持向量机(SVM)分类器与直方图相交核进行分类。通过考虑两个非常高分辨率的全色图像获得的实验结果表明了所提出的HAP的有效性,相对于基于标准AP的方法,这大大提高了SVM分类器的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号