首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Space–Time Adaptive Processing and Motion Parameter Estimation in Multistatic Passive Radar Using Sparse Bayesian Learning
【24h】

Space–Time Adaptive Processing and Motion Parameter Estimation in Multistatic Passive Radar Using Sparse Bayesian Learning

机译:基于稀疏贝叶斯学习的多基地被动雷达时空自适应处理和运动参数估计。

获取原文
获取原文并翻译 | 示例

摘要

Conventional space–time adaptive processing suffers from the requirement of a large number of secondary samples. In this paper, a novel method is proposed to accurately estimate the clutter covariance matrix based on a small number of secondary samples, by exploiting the common clutter support across nearby range cells in the angle–Doppler domain. By taking advantage of the intrinsic sparsity of the clutter in the angle–Doppler domain, the recently developed sparse Bayesian learning technique is employed for high-resolution clutter profile estimation. The proposed method does not require the independent and identically distributed secondary sample assumption, and the required number of secondary data samples can be significantly reduced. In addition, we propose a sparse reconstruction-based approach to acquire the 2-D motion parameters of moving targets, by exploiting their group sparsity in the velocity domain in the multistatic passive radar systems. Simulation results verify the effectiveness of the proposed algorithm.
机译:传统的时空自适应处理需要大量的二次采样。在本文中,提出了一种新颖的方法,该方法可以通过利用角度-多普勒域中邻近测距单元的共同杂波支持,基于少量的二次采样来准确估计杂波协方差矩阵。通过利用角度多普勒域中杂波的固有稀疏性,最近开发的稀疏贝叶斯学习技术被用于高分辨率杂波轮廓估计。所提出的方法不需要独立且相同分布的次级样本假设,并且可以显着减少所需的次级数据样本数量。此外,我们提出了一种基于稀疏重构的方法,通过利用多目标无源雷达系统中速度域中的目标稀疏性来获取运动目标的二维运动参数。仿真结果验证了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号