首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Multiclass Object Detection With Single Query in Hyperspectral Imagery Using Class-Associative Spectral Fringe-Adjusted Joint Transform Correlation
【24h】

Multiclass Object Detection With Single Query in Hyperspectral Imagery Using Class-Associative Spectral Fringe-Adjusted Joint Transform Correlation

机译:使用类关联谱条纹调整联合变换相关性的高光谱图像中单查询的多类目标检测

获取原文
获取原文并翻译 | 示例

摘要

We present a deterministic object detection algorithm capable of detecting multiclass objects in hyperspectral imagery (HSI) without any training or preprocessing. The proposed method, which is named class-associative spectral fringe-adjusted joint transform correlation (CSFJTC), is based on joint transform correlation (JTC) between object and nonobject spectral signatures to search for a similar match, which only requires one query (training-free) from the object's spectral signature. Our method utilizes class-associative filtering, modified Fourier plane image subtraction, and fringe-adjusted JTC techniques in spectral correlation domain to perform the object detection task. The output of CSFJTC yields a pair of sharp correlation peaks for a matched target and negligible or no correlation peaks for a mismatch. Experimental results, in terms of receiver operating characteristic (ROC) curves and area-under-ROC (AUROC), on three popular real-world hyperspectral data sets demonstrate the superiority of the proposed CSFJTC technique over other well-known hyperspectral object detection approaches.
机译:我们提出了一种确定性对象检测算法,该算法无需任何训练或预处理即可检测高光谱图像(HSI)中的多类对象。该方法被称为类关联谱条纹调整联合变换相关性(CSFJTC),它基于对象和非对象光谱特征之间的联合变换相关性(JTC)来搜索相似的匹配项,该匹配项仅需要一个查询(训练-无)从对象的光谱特征。我们的方法在光谱相关域中利用类关联滤波,改进的傅立叶平面图像减法和经过边缘调整的JTC技术来执行目标检测任务。 CSFJTC的输出会为匹配的目标产生一对尖锐的相关峰,而对于失配会产生可忽略的相关峰或没有相关峰。在三个流行的现实世界高光谱数据集上,根据接收器工作特性(ROC)曲线和ROC下面积(AUROC)的实验结果证明了所提出的CSFJTC技术优于其他众所周知的高光谱物体检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号